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ABSTRACT 

The widespread usage of ultrasound imaging equipment 

necessitates the need for better image processing techniques to 

offer a clearer image to the medical practitioner. This makes the 

use of efficient despeckle filtering a very important task. The 

speckle is most often considered a dominant source of 

multiplicative noise in ultrasound imaging and should be filtered 

out without affecting important features of the image. The 

objective of the paper is to compare performance of the 

multiscale methods, namely, wavelet transform, Laplacian 

pyramid transform and contourlet transform for despeckling 

medical ultrasound images. The effects of different thresholding 

techniques using Bayes shrinkage rule for denoising ultrasound 

images are examined. The despeckled image quality is evaluated 

using filter assessment parameters like variance, Mean-Square 

Error (MSE), Signal to Noise Ratio (SNR), Peak Signal to Noise 

Ratio (PSNR) and Correlation Coefficient (CC). The 

performance comparison of multi-scale schemes shows that 

contourlet transform based despeckling method excels over the 

other two transform based despeckling methods. Extensive 

experimentation has been carried out for comparative analysis of 

performance of the methods.  

General Terms 
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1. INTRODUCTION 
Medical images are usually corrupted by noise during their 

acquisition and transmission. The main objective of image 

denoising techniques is to remove such noises while retaining as 

much as possible the important image features. The use of 

ultrasound (US) in diagnosis is well established because of its 

non-invasive nature, low cost, capability of forming real time 

imaging and continuing improvement in image quality [1]. 

However, the usefulness of ultrasound imaging is degraded by 

the presence of signal dependant noise known as speckle. So 

speckle filtering is a central pre-processing step for feature 

extraction, analysis and recognition from medical imagery 

measurements. 

The post acquisition techniques for speckle reduction can be 

classified into two categories: single scale spatial filtering and 

transform domain filtering methods. Within the second category, 

several multiscale methods have been proposed. Recently, there 

have been many challenges to reduce the speckle noise using 

Wavelet Transform (WT) as a multiresolution image processing 

tool. Speckle noise is a high-frequency component of the image 

and appears in wavelet coefficients. One widespread method 

used for speckle reduction is wavelet shrinkage. In [2], a review 

of despeckling methods for ultrasound imaging is presented. 

N.K.Ragesh et al. [3] have discussed about two broad categories 

of noise reduction techniques in ultrasound images namely 

during acquisition and after acquisition of image. Hiremath et al. 

[4] have proposed despeckling ultrasound images using wavelet 

and Bayes thresholding. Alin Achim et al. [5] have presented a 

novel speckle suppression method for medical ultrasound 

images. The authors design a Bayesian estimator that exploits 

speckle statistics. Aleksandra Pizurica et al. [6] have proposed a 

robust wavelet domain method for noise filtering in medical 

images. Nikhil Gupta and M.N. Swamy [7] have proposed a 

novel technique for despeckling the medical ultrasound images 

using lossy compression and wavelet transform. There has been 

growing awareness to the observation that wavelet transform is 

not capable of diagnosing the direction of any line-shaped 

discontinuity in the image [6]. In essence, wavelets are good at 

catching zero dimensional singularities, but two-dimensional 

piecewise smooth signals resembling images have one-

dimensional singularities. That is, smooth regions are separated 

by edges, and while edges are discontinuous across, they are 

typically smooth curves. Intuitively, wavelets in 2-D obtained by 

a tensor-product of one dimensional wavelets will be good at 

isolating the discontinuity across the edge, but will not see the 

smoothness along the edge. This disappointing behavior 

indicates that more powerful bases are needed in higher 

dimensions. 

A new nonseparable two-dimensional signal transform, called 

the Contourlet Transform (CT) has recently been proposed as an 

alternative to an improvement on separable wavelet for 

representation of natural images. This transform scales to 

capture the intrinsic geometrical structure in visual information 

through a multiresolution, multidimensional decomposition [8]. 

Mao-Yu Huang et al. [9] have presented a contourlet based 

speckle reduction method for breast ultrasound images. The 

double iterated filter bank structure and a small redundancy at 

most 4/3 using two thresholding methods shows a great promise 

for speckle reduction. Hiremath et al. [10] have proposed 
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despeckling medical ultrasound images using contourlet 

transform using Bayes shrinkage rule. K.Thangavel et al. [11] 

have compared different filtering techniques based on statistical 

methods for the removal of speckle noise from ultrasound image 

of prostate. Wan M.H. et al. [12] have compared performance of 

five common enhancement techniques based on spatial domain 

filtering, frequency domain filtering, histogram processing, 

morphological filtering and wavelet filtering for ultrasound 

kidney image. Authors show that detection of edge is better by 

using wavelet filtering and median filtering. Mariana et al. [13] 

have compared despeckling method, based on wavelet 

transform, the median filter and the wiener filter for medical 

ultrasound images. By means of experimental results, it has been 

shown that the WT method yields far better results than the 

other two filters. Ali Saad [14] has compared two multi 

resolution methods: WT and Laplacian pyramid transform (LP), 

for simultaneous speckle reduction and contrast enhancement 

for ultrasound images. As a lot of variability exists in ultrasound 

images, the wavelet method proves to be a much better method 

than the Laplacian one for an overall improvement.  However, a 

comparison of all the three transforms, namely wavelet 

transform, Laplacian pyramid transform, and contourlet 

transform is not found in the literature. In this paper, the aim is 

to  study comparative analysis of the above multiresolution 

methods for despeckling medical ultrasound images. 

2. THE TRANSFORM BASED DESPECK- 

-LING ALGORITHM 
The noise commonly manifests itself as a fine grained structure 

in an image, which leads to discontinuities at edge points. The 

transform exploits smoothness of contour effectively by 

considering a variety of directions following the contours. 

Further, thresholding is performed so as to reduce speckle. The 

steps involved in the proposed method are given in the 

Algorithm 1. 

Algorithm 1: Despeckling of ultrasound image. 

Input: Medical ultrasound image. 

Output: Despeckled image. 

Start 

Step 1: Input medical ultrasound image X. 

Step 2: Apply log transformation to the input   image X. 

Step 3: Apply the wavelet transform on the log transformed   

            image of the Step 2 upto n levels of subband   

            decomposition at each level.                

Step 4: Perform thresholding of the transformed image of the  

            Step 3. 

Step 5: By performing the inverse transform on the thresholded    

            image of the Step 4, the  despeckled image Y is obtained  

            (output image). 

Step 6: Compute the values of the performance parameters,  

            namely, variance, MSE, SNR,PSNR, correlation  

            coefficient for the despeckled image Y of the Step 5.       

Stop 

 

In the Step 4, the wavelet transformed image can be thresholded 

by : (i) selecting either global or subband thresholding function, 

(ii) selecting shrinkage scheme (Hard, Soft or Semi-soft), and 

(iii) selecting Bayes shrinkage or universal shrinkage rule. 

However, in the Step 3, the Laplacian pyramidal transform or 

the contourlet transform can be employed instead of the wavelet 

transform. The LP transform is performed using different filters 

upto n levels, where n depends on the image size. The contourlet 

transform can be done upto n levels of Laplacian pyramidal 

decomposition and m directional decompositions at each level, 

where n and m depend on the image size. This is followed by the 

thresholding in the Step 4 by selecting shrinkage scheme (Hard, 

Soft or Semi-soft), and using Bayes shrinkage rule. 

3. TRANSFORM METHODS 
The transform methods are based on the discrete wavelet 

transform, the Laplacian pyramid transform and the contourlet 

transform, which are described below: 

3.1 Discrete wavelet transform 
Wavelets have recently emerged as a powerful tool for image 

denoising. The discrete wavelet transform maps an image into a 

set of coefficients that constitute a multiscale representation of 

the image. Discrete Wavelet Transform (DWT) of a signal x(n) 

is computed by passing it through a series of filters. First the 

samples are passed through a low pass filter with impulse 

response g(n) giving approximation coefficients. The signal is 

decomposed simultaneously using a high pass filter h(n), giving 

the detailed coefficients. The low pass filter gives approximation 

coefficients. These filters are called Quadrature Mirror Filters 

(QMF). Since half the frequencies of the signal are removed, the 

filter outputs are down sampled by 2. 

[ ] [ ] [ ]nkgnxkY
n

low −=∑ 2.        low pass filter output.  (1) 

[ ] [ ] [ ]nkhnxkY
n

high −=∑ 2.       high pass filter output. (2) 

Image is a 2D signal represented by x(N,M) . Each row is 

filtered and then down sampled to obtain two (N,M/2) images. 

Then each column is filtered and down sampled to obtain four 

(N/2,M/2) images. The four subbands created are named as LL, 

LH, HL and HH.  In two dimensions, following functions are 

required: (i) One two-dimensional scaling function  φ(x,y). 

(ii)Three two-dimensional wavelet functions, ψ H (x, y),ψ V (x, y) 

and ψ D (x, y). The Approximation subband LL is then 

decomposed into four at level two and the process can be 

continued in the same manner for further levels. LL subband has 

the energy concentration for low pass and the HH band contains 

high frequency components. Reconstruction can be performed  

by IDWT (Inverse Discrete Wavelet Transform) to obtain the 

despeckled image. The despeckling using wavelet coefficients is 

has been experimented in [4]. 

3.2 Laplacian    pyramid   transform 
One way of achieving a multiscale decomposition is to use a 

Laplacian pyramid (LP) [15]. The LP decomposition at each 

level generates a down sampled lowpass version of the original 

as coarse approximation ‘c’ and the difference ‘d’ between   the   

original  and   the   prediction,  resulting   in    a   band   pass 

image. The process can be iterated by decomposing the coarse 

version repeatedly. Assuming the filters in LP are orthogonal 

filters, an image  X is  decomposed  into J   bandpass  images  dj 

, j=1,2,. . . , J and a coarse approximation image cj. Then, we 

have 2
2

1

2
X J

J

j

j cd +=∑
=

.                              (3) 

The Laplacian is then computed as the difference between the 

original image and the low pass filtered image. This process is 

continued to obtain a set of band-pass filtered images (since 

each one is the difference between two levels of the Gaussian 

pyramid). Thus the Laplacian pyramid is a set of band pass 

filters. By repeating these steps several times, a sequence of 

images are obtained. If these images are stacked one above 
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another, the result is a tapering pyramid data structure  and, 

hence the name the Laplacian pyramid. This  can thus be used to 

represent images as a series of bandpass filtered images, each 

sampled at successively sparser densities. A drawback of the LP 

is the implicit oversampling. However, in contrast to the 

critically sampled wavelet scheme, the LP has the distinguishing 

feature that each pyramid level generates only one bandpass 

image (even for multidimensional cases), which does not have 

“scrambled” frequencies. This frequency scrambling happens in 

the wavelet filter bank when a highpass channel, after 

downsampling, is folded back into the low frequency band, and 

thus its spectrum is reflected. In the LP, this effect is avoided by 

downsampling the lowpass  channel only. 

3.3 Contourlet transform 
An efficient representation of visual information is one of the 

important tasks in image processing applications such as 

denoising. Efficiency of a representation refers to the ability to 

capture significant information of an object of interest using a 

small description. Medical ultrasound images are not simply 

stacks of 1-D piecewise smooth scan-lines. The discontinuity 

points (i.e. edges) are typically located along smooth curves (i.e. 

contours) owing to smooth boundaries of physical objects. Thus 

these images contain intrinsic geometrical structures that are key 

features in visual information. The wavelets in 2-D are good at 

isolating the discontinuities at edge points, but will not see the 

smoothness along the contours. The contourlets can be loosely 

interpreted as a grouping of nearby wavelet coefficients  since 

their locaters are locally correlated due to the smoothness of the 

boundary curve. We can obtain a sparse image expansion by 

first applying a multiscale transform and then applying a local 

directional transform to gather the nearby basis functions at the 

same scale into linear structures. Thus, we perform a wavelet 

like transform for edge detection, and then a local directional 

transform for contour segment detection. In other words, the 

contourlet transform comprises a Double Filter Bank (DFB) 

approach for obtaining sparse expansions for typical images 

with smooth contours. The contourlet transform is the simple 

directional extension for wavelet that fixes its subband mixing 

problem and improves its directionality. The continuous-domain 

expansion generated by the contourlet construction [16] assumes 

that the Laplacian pyramid is a multiscale decomposition of the 

L2(R2) space into a series of increasing resolution
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with the usual definition of the subspaces Vj0 and Wj  as in the 

wavelet multiresolution analysis: Vjo is an approximation 

subspace at the scale 2j0, whereas Wj contains the added details 

to the fine scale  2 j-1. In contourlet  transform, suppose that an 

lj-level  DFB is applied to the detail subspace Wj of the LP. This 

results in a decomposition of Wj into 2l
j directional subspaces at 

scale 2j : 
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The band pass images (dj[n]) from the LP are fed into a DFB so 

that directional information can be captured. The scheme can be 

iterated on the coarse image (cj[n]). The combined result is a 

double iterated filter bank structure, named Pyramidal 

Directional Filter Bank, (PDFB), which decomposes images into 

directional subbands at multiple scales. The contourlet 

expansion satisfies the parabolic scaling relation for curves: 

width α  length2 by using directional decompositions, where 

the number of directions is doubled at every other finer scale. 

Assuming the DFB  is orthogonal, it decomposes each bandpass 

image bj  into directional coefficients dj with .
22

jj db = Then 

the decomposition by PDFB : ( )JJ add ,,...,d X 21a  

also has the energy conservation  property :        

                
.
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2
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J

J

j
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=

                  (6)  

4. ADAPTIVE THRESHOLDING 
The thresholding approach is sensitive to noise components. In 

this approach, noisy transform coefficients (high frequency 

components) are attenuated, whose amplitudes are smaller than 

a certain statistical threshold value, to zero while retaining the 

smoother transform coefficients to reconstruct the ideal image 

without much loss in its details. In Soft Thresholding (ST) 

technique, the input is shrunk to zero by an amount of threshold 

λ. In Hard Thresholding (HT) technique, the input is preserved if 

it is greater than threshold λ; otherwise, it is set to zero. The aim 

of Semi-Soft Threshold (SST) is to offer a compromise between 

hard and soft thresholding by changing the gradient of the slope. 

This scheme requires two thresholds, a lower threshold λ and an 

upper threshold λ 1 where λ  is estimated to be twice the value of 

lower threshold λ. The criterion of each scheme is described as 

follows. Given that λ denotes the threshold limit, Xw denotes the 

input transform coefficients and Yt denotes the output transform 

coefficients after thresholding, we define the following 

thresholding functions: 

(i) Hard  Thresholding
( )
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λX where                           ,     X
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 (ii) Soft  Thresholding 
( )
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 (iii) Semi-soft Thresholding 
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4.1 Bayes shrinkage rule 
This shrinkage rule uses a Bayesian mathematical frame work 

for images to derive subband dependent thresholds. The formula 

for the threshold on a given subband s for the model, with zero 

mean variable X, is given by 

      

x

n

s σ
σ

λ
2

=
’                                                       (10) 

where 
nσ  , the estimated noise variance found as the median of 

the absolute deviation of the transform coefficients on the finest 

level L1, is given by 
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xσ , the estimated signal variance on the sub band considered, is 

given by    

        ( )0,22

nyx Max σσσ −=
 ,                     (12)

 

and 
2

yσ  , an estimate of the variance of the observations, is given 

by 

        ∑
=

=
sN

k

k

s

y W
N 1

22 1
σ

                (13) 

in which, Ns is the number of the transform coefficients Wk on  

the subband considered. In the Eq. 11, the value 0.67452 is the 

median absolute deviation of normal distribution with zero mean 

and unit variance. In case of ,
22

yn σσ ≥  
Xσ is zero, and in 

practice, ( ) { }1Xs L∈= ji,Xmaxσλ  and all 

coefficients are set to zero. 

 

5. FILTER ASSESSMENT 
To quantify performance improvements of the speckle reduction 

method, various measures are used . The following metrics are 

calculated for the original image  X and the despeckled image Y. 

Noise Variance: It determines the contents of the speckle in the 

image. A lower variance gives a cleaner image as more speckles 

are reduced. The formula for calculating the   variance σ is                

             ∑
−

=

=
1

0

2X
1 N

j

j
N

σ  .                                  (14) 

Mean Square Error (MSE): The MSE measures the quality 

change between the original image (X) and denoised image (Y). 

The average of the squared error measure is given by  

        ( )2
1

0

j XY
1

MSE j

N

jN
∑
−

=

−= .                                 (15) 

The MSE has been widely used to quantify image quality and, 

when used alone, it does not correlate strongly enough with 

perceptual quality. It should be used, therefore, together with 

other quality metrics and visual perception. 

Signal-to-Noise Ratio (SNR): The SNR represents the size of 

the error relative to the signal. We can find the ratio of the 

average squared value of the source and the MSE as SNR. It is 

expressed in decibels (dB) as 
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where, 
2

gσ   is  the  variance of  the  original  image   and 
2

eσ  is   

the  variance  of  error (Difference between the original and 

denoised image). Brighter regions have a stronger signal due to 

more light, resulting in higher overall SNR. 

Peak Signal-to-Noise Ratio (PSNR): The PSNR   represents 

the size of the error relative to the peak value of the signal than 

with the size of the error relative to the average squared  value 

of the signal and is computed a with the size of the error relative 

to the average squared  value of the signal and is computed as 

 

           








=

MSE
log10PSNR

2

10

S  ,                                 (17) 

where S is the maximum intensity in the original image. The 

PSNR is higher for a better-transformed image and lower for a 

poorly transformed image. It measures image fidelity, that is, 

how closely the transformed image resembles the original 

image. 

Correlation Coefficient (CC): It represents the strength and 

direction of a linear relationship between two variates. The best 

known is the Pearson product moment correlation coefficient, 

which is obtained by dividing the covariance of the two 

variables by the product of their standard deviation, as given by  

( ) ( )∑∑ ∑
∑ ∑ ∑

−−

−
=

2222
YYXX

YXYX
CC

iiii

iiii

NN

N
 .                     (18) 

If the correlation coefficient is near to +1, then there exists 

stronger positive correlation between the original and 

despeckled image 

6. EXPERIMENTATION USING DISCRE- 

TE WAVELET TRANSFORM, LAPLAC-

IAN PYRAMID TRANSFORM AND 

CONTOURLET TRANSFORM 
The experimentation has been performed on both the medical 

ultrasound images and the synthetic images in order to ascertain 

the effectiveness of the despeckling methods. 

 

6.1 Medical ultrasound images  
The experimentation is carried out on 52 ultrasound images of 

size 512 X 512 of kidney using wavelet transform, Laplacian 

pyramid transform and contourlet transform based despeckling 

methods. These images are acquired using the instrument GE 

LOGIQ 3 Expert system with 5-MHz transducer frequency, in 

JPEG format. The three methods have been implemented on the 

Core2Duo system with 1GB RAM and 2.53GHz using 

MATLAB 7.9.  

 

6.1.1Discrete wavelet transform  
In [4], the experimental results show that wavelet transforms can 

denoise the speckle images more effectively. The main 

advantage of the wavelet transform is that the image fidelity 

after reconstruction is visually lossless. Further, it is found that 

the wavelet filter bior 6.8 with level 3 yields better results than 

other filters. The performance evaluation of the wavelet method 

is done in terms of Variance, MSE, SNR, PSNR and CC values 

computed from the despeckled image. The average results 

obtained for 52 medical ultrasound images for the different 

thresholding schemes are given in the Table 1. From Table 1 it is 

observed that subband threshold function, using Bayes shrinkage 

rule and soft thresholding technique, gives superior results than 

other thresholding techniques. The results of wavelet method are 

compared with common speckle filters, namely the Kuan, 

Wiener and Lee filters (Figures 1-3). The comparison shows that 

the wavelet method is better than common speckle filters. 

 

6.1.2  Laplacian pyramid transform  
The Laplacian pyramid transform is performed on the log 

transformed image. The Laplacian pyramidal decompositions up 

to nine levels are performed using biorthogonal filters with      
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sufficient accuracy numbers such as the “9/7” and “5/3”. 

Further, thresholding schemes such as hard thresholding, soft 

thresholding and semi-soft thresholding is performed to reduce 

speckle. The threshold value is calculated using Bayes’shrinkage 

rule. The Table 2 shows the average results obtained for 52 

ultrasound images for different reconstruction methods. The 

PSNR is calculated up to nine LP decompositions.The PSNR 

value increases up to 5 decompositions using ST, 2 decomp-

ositions using SST and 1 decomposition using HT thereafter 

reduces. Hence, the optimal level of LP  decomposition is 5 for 

soft thresholding (LP-ST-L5), 2 decompositions for semisoft 

thresholding (LP-SST-L2) and 1 decomposition for hard  thresh        

olding (LP-HT-L1). The optimal reconstruction method is 

determined by criteria, namely lower variance and MSE, higher 

SNR and PSNR values, Correlation Coefficient (CC) is nearly 

equal to one. From Table 2, it is observed that the one level 

Laplacian pyramidal decomposition using hard  thresholding 

and the filter bior 5/3 yield better results than other techniques. 

The reconstructed image is the despeckled image.  

 

6.1.3 Contourlet transform      
The contourlet transform is performed using double filter bank 

structure. The six levels of Laplacian pyramidal decompositions 

are performed using biorthogonal filters with sufficient accuracy 

numbers such as the “9-7”. The directional decompositions up to 

nine is performed in all the pyramidal levels, using two 

dimensional ladder filters. The contourlet transform uses the 

“9/7” filters in LP stage because, in the multiscale 

decomposition stage, it significantly reduces all inter-scale, 

inter-location and inter direction mutual information of 

contourlet coefficients. Similarly, in directional decomposition 

stage, the ladder structure PKVA filters are more effective in 

localizing edge direction as these filters reduce the inter-

direction mutual information. Further, thresholding schemes 

such as hard thresholding, soft thresholding   or semi-soft 

thresholding is performed to reduce speckle. The threshold value 

is calculated using Bayes’ shrinkage rule. The PSNR is 

calculated up to 6 LP decompositions. The PSNR value 

increases up to 2 decompositions using HT, ST and SST, and 

thereafter reduces. Hence, the optimal level of LP 

decomposition is 2. The average results obtained for 52 

ultrasound images for different reconstruction methods are 

tabulated. The results obtained for the optimal decomposition of 

LP levels and directional decompositions using contourlet 

method based on hard thresholding, soft thresholding and semi-

soft thresholding using Bayes rule are given in Tables 3, 4 and 5, 

respectively. The optimal reconstruction method is determined 

by the criteria, namely, lower Variance and MSE, higher SNR 

and PSNR values, correlation coefficient is nearly equal to one. 

From the Tables 3, 4 and 5, it is observed that the 2-level 

Laplacian pyramidal decomposition and 6 directional bandpass 

sub-bands (2 at level 1, 4 at level 2)  using hard thresholding 

yield better results than soft thresholding and semi-soft 

thresholding techniques. The frequency bands obtained by using 

optimal level L2-21 of contourlet decomposition are as follows: 

the 2nd level has 1 approximation band of size 64 x 64 and 6 

detail components (4 of 64 x 64, 2 of 128 x 256). The 

reconstructed image is the despeckled image. The hard 

thresholding is better than other thresholding methods, because 

small coefficients are removed while others are left untouched in 

 

HT while in ST or SST, coefficients above the  threshold are 

shrunk by  absolute value of threshold. 

The filter assessment parameters MSE, SNR, PSNR, variance 

and CC are computed for all the three transforms. The Figures 4-

6, shows the comparison of the three methods. From the Figures 

4-6, it is observed that, the contourlet based despeckling method 

shows better performance than the other despeckling methods. 

Further, it is found that the despeckling   using contourlet 

transform gives better results than the speckle reduction method 

based on wavelet transform in particular. The wavelet based 

Bayes shrink thresholding method is based on separable 2D 

wavelet transform  has limited directions (Horizontal, Vertical 

and Directional). Speckle noise in medical ultrasound images 

will generate significant coefficients in wavelet domain just like 

true detail features, such as edges. The despeckling method in 

contourlet domain can combine the   coefficients along the 

smooth curve, like the cyst edges and kidney stone contour. 

However, the speckle noise is less likely to generate significant 

coefficients using the  contourlet method, and thus, it directly 

leads to better performance in suppressing noise than the Bayes 

shrink thresholding scheme based on wavelet domain. The 

medical experts performed the visual inspection to confirm the 

improvement of the image quality attained by   the CT algorithm 

in our experiment. 

Another way to analyze the effect of filters is to study the error 

image between the original image and the filtered image. The 

error image is calculated as the absolute difference between the 

two images. The distribution of information inside the error 

image provides a qualitative indication about the filtering 

method. If the information is randomly distributed, generally 

similar to speckle distribution, this indicates that the extracted 

information from original image is non-structured and may be 

considered to be mainly noise. If there is some structured 

information is present in the error image, this indicates that 

some structured information (boundaries or edges) is higher in 

one image than other. The difference between the original image 

and the filtered image proves that edges in the original are 

higher in amplitude than the filtered image this indicates that a 

smoothing of edges was obtained. If the opposite case happens, 

the indication is that a boosting of the edges is present.The error 

image concerning contourlet transform in the Figure 10 (f) 

shows clearly that a random distribution of information is 

present in this figure, which is very similar to speckle 

distribution. This error image presents a map distribution 

Table 2. Performance evaluation of different thresholding 

methods in terms of filter assessment parameters 

Filter type= Bior 5/3 

Levels PSNR SNR MSE Variance CC 

LP-HT-L1 23.877 18.598 0.0138 0.0160 0.996 

LP-ST-L5 20.181 16.792 0.0161 0.0179 0.986 

LP-SST-L2 20.9825 17.069 0.0155 0.0169 0.993 

Filter type= Bior 9/7 

LP-HT-L1 22.495 16.246 0.019 0.016 0.996 

LP-ST-L5 21.328 15.570 0.016 0.016 0.987 

LP-SST-L2 20.832 15.964 0.022 0.020 0.992 
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on every pixel in the image which is much better representation 

than mean square error or other, generally calculated on the 

whole image, which is of quite small interest in this type of 

highly noisy data. This type of error representation proves 

visually that the edges neither amplified nor damped and the 

random distribution of noise shows that the filtering reduces 

mainly the speckle. The error image in the Figure 10 (c) and 

Figure 10(d) concerning the  wavelet transform and Laplacian 

pyramid transform respectively, shows that some 

structures(edges) and non-structures (mainly noise) information 

are amplified in these  images.Figure 10(d) concerning the  

wavelet transform and Laplacian pyramid transform 

respectively, shows that some structures(edges) and non-

structures (mainly noise) information are amplified in these  

images. This is due to the boosting of   local strong variation 

without taking into account the directionality as in contourlet. 

The qualitative assessment and quantitative viewpoints shows 

that despeckling using contourlet transform is better adapted to 

ultrasound images. 

6.2   Synthetic image  
It is very difficult to compare three methods for removing 

speckle from real ultrasound images, because it depends on what 

we need from such an image. For small details it is not obvious 

to a non-expert in the diagnoses of ultrasound images to know 

what we need to eliminate or to preserve and enhance. Some of 

the statistical measurements such as SNR, MSE, CC are not very 

significant in the case of real ultrasound images if they are 

applied to whole image without a prior knowledge of it. Such 

measurements could be efficient in the case of simulated images. 

In order to investigate the quantitative performance of the 

selected methods, an image with artificial speckle noise was 

employed. A purely  synthetic  image  which consists of  regions  

with uniform intensity, sharp edges and strong scatters with 

SNR of 8.3dB is considered for experimentation(image available 

at http://telin.ugnet.be/~sanja). The experimentation is carried 

out on synthetic image to evaluate despeckle filtering in medical 

ultrasound imaging. All the three despeckling methods, namely,  

wavelet transform, Laplacian pyramid transform and contourlet 

transform are performed on the phantom image. All the filters 

show the similar performance in removing the speckle at the 

same time gave significant results. From the Figures.7-9, it is 

observed that despeckling using contourlet transform gave very 

good performance in terms of (i) decreasing the variance, (ii) 

increasing the SNR, PSNR  and CC values to be nearly equal to 

one. Further, it is found that, 4-level of Laplacian pyramidal 

decomposition and 14 directional  bandpass subbands ( 4 of 

32X32, 4 of 64 x 64 ,  2 of 128 x 256, 4 of 256X256)  using soft 

thresholding with Bayes shrinkage rule yields optimal results for 

speckle reduction.  From Figure 11 (a), (c), (e), the edges of the 

phantom image was studied and it was shown that the contourlet 

transform based despeckling method does not blur edges as with 

the other two despeckle filtering techniques. The error image in 

Figure 11 (b) and (d), obtained after wavelet transform and 

Laplacian pyramid transform shows that structured information 

and nonstructured information are amplified (white pixels) in 

these images. This is due to the boosting of local strong 

variation without taking into account the edge direction as in 

contourlets (Figure 11 (f)). It is clear that despeckling using 

contourlet transform is better interms of smoothing the internal 

variations and preserving boundaries. 

 

7. CONCLUSION  
In this paper, three multi-scale methods are tested and compared 

for despeckling medical ultrasound images. These methods are 

proven to be very efficient to treat multiplicative noise and 

reduce speckle in ultrasound images. Several studies prove that 

wavelet based despeckling is among the best methods for 

ultrasound images. The Laplacian pyramid transform and 

contourlet transform based despeckling methods are applied 

recently on ultrasound images and proves to give very good 

results. But the wavelet transform, Laplacian pyramid transform 

and contourlet transform have not been compared to each other  

 using ultrasound images, where lot of variations exists in the 

background. The performance evaluation of the three methods is 

done interms of variance, MSE, SNR, PSNR correlation 

coefficient (CC) are computed from despeckled image. This 

study proves that contourlet transform using hard thresholding is 

an excellent tool for despeckling medical ultrasound images. 

Further, it is found that, 2-level of Laplacian pyramidal 

decomposition and 6 directional  bandpass subbands (4 of 64 x 

64, 2 of 128 x 256)  using hard thresholding with Bayes’ 

shrinkage rule yields optimal results for speckle reduction.  The 

Table 3. Optimal decomposition of LP levels and 

directional decompositions in terms of variance, MSE, 

SNR, PSNR, CC values using contourlet  method based 

on hard thresholding (HT) using Bayes rule. 

Levels PSNR Variance MSE CC SNR 

L1-2 32.492 0.00881 0.00064 0.9993 26.743 

L2-21 32.770 0.0081 0.00060 0.9995 27.177 

L3-521 26.704 0.00882 0.00303 0.9977 25.126 

L4-

4311 
25.391 0.00872 0.00463 0.9973 24.853 

L5-

51311 
25.325 0.00882 0.00470 0.9977 23.823 

L6-

121311 
25.312 0.00982 0.00470 0.9977 21.811 

Table 4. Optimal decomposition  of LP levels and 

directional decompositions in terms of variance, MSE, 

SNR, PSNR, CC values using contourlet method based on 

soft thresholding (ST) using Bayes rule. 
Levels PSNR Variance MSE CC SNR 

L1-1 28.394 0.00962 0.00154 0.99910 21.845 

L2-21 29.153 0.00923 0.00134 0.99853 24.474 

L3-332 20.284 0.00934 0.01332 0.99358 20.862 

L4-

5331 
22.837 0.00905 0.00863 0.99288 19.115 

L5-

22332 
21.620 0.00947 0.01077 0.99292 18.058 

L6-

123332 
22.041 0.00947 0.01033 0.99271 19.420 

Table 5. Optimal decomposition  of LP levels and 

directional decompositions in terms of variance, MSE, 

SNR, PSNR, CC values using contourlet method based on 

semi-soft thresholding (SST) using Bayes rule. 
Levels PSNR Variance MSE CC SNR 

L1-1 30.468 0.00963 0.00155 0.99911 22.962 

L2-21 30.718 0.00923 0.00134 0.99852 25.269 

L3-332 24.575 0.00935 0.01332 0.99358 23.074 

L4-

5331 
24.558 0.00906 0.00864 0.99288 22.997 

L5-

22332 
24.189 0.00947 0.01077 0.99292 20.987 

L6-

123332 
24.200 0.00948 0.01034 0.99272 21.694 
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error distribution indicates that the contourlet scheme provides a 

better overall improvement. The contourlet transform based 

despeckling method produces better quality ultrasound images 

for subsequent computer-assisted image analysis by medical 

experts. 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig.10 (a) Despeckled image using wavelet transform (b) 

Despeckled image using Laplacian pyramid transform 

(c)The difference image of original image and Fig. 10(a). (d) 

The difference image of original image and Fig. 10(b). (e) 

Despeckled image using contourlet transform (f) The 

difference image of original image and Fig.10 (e) 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 11. (a) Despeckled image using wavelet transform (b) 

The difference image of original image and Fig. 11 (a).  (c) 

Despeckled image using Laplacian pyramid transform (d) 

The difference image of original image and Fig. 11 (c). (e) 

Despeckled image using contourlet transform (f) The 

difference image of original image and Fig.11 (e) 
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Table 1.  Performance evaluation of different thresholding methods in terms of variance, MSE, SNR, PSNR, CC values. 

Shrinkage 

rule  
Global thresholding(2) Subband thresholding(1) 

Bayes 

shrinkage 

(2) 

Thresholding variance MSE SNR CC PSNR variance MSE SNR CC PSNR 

Hard(1) 0.0552 0.00137 23.95 0.99613 26.6934 0.0237 0.0014 24.8 0.998 27.513 

Soft(2) 0.0552 0.00137 23.95 0.99613 26.6934 0.0138 0.0012 24.811 0.999 28.66 

Semi-soft(3) 0.0552 0.00139 23.98 0.99613 25..93 0.0268 0.0014 24.78 0.998 27.722 

  
Global thresholding Subband thresholding 

universal 

shrinkage 

(1) 

Hard(1) 0.0248 0.0057 18.28 0.9933 21.3518 0.0288 0.0056 20.28 0.996 20.827 

Soft(2) 0.0142 0.0164 13.83 0.9875 17.7381 0.0214 0.0085 16.74 0.994 18.198 

Semi-soft(3) 0.0198 0.0094 16.04 0.9919 17.0855 0.0262 0.0073 18.984 0.995 19.612 

  
Fig. 1. Statistical features PSNR and 

SNR for common speckle filtersand  

Wavelet filter.  

Fig. 2. Statistical features Variance, MSE 

for common speckle filters and Wavelet 

filter. 

Fig. 3. Statistical feature  Correlation   

Coefficient (CC)for common   Speckle filters 

and Wavelet. 

  
Fig. 4. Statistical feature MSE, 

Variance for CT , LP and WT for 

US images. 

 

Fig. 5. Statistical feature PSNR, SNR for 

CT, LP and WT for US images. 

Fig. 6. Statistical feature Correlation 

Coefficient (CC), for CT, LP and WT for US 

images. 

 

 

 

Fig. 7. Statistical feature PSNR, 

SNR for CT, LP and WT for 

Synthetic image. 

Fig. 8.  Statistical feature MSE, Variance 

for CT, LP and WT for Synthetic image. 

Fig. 9.  Statistical feature Correlation 

Coefficient (CC), for CT, LP and WT for 

Synthetic image. 
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