DEVELOPMENT OF A TOOL TO OBJECTIVELY IDENTIFY NORMAL HUMAN VOICE

A dissertation submitted For the Award of the Degree of

Doctor of Philosophy (Medical)

Under The Faculty of Medicine

BLDE (Deemed to be University), Vijayapur Karnataka,

By

Dr. LATHADEVI HASSAN THOTAPPA

Reg. No-11PhD007

PhD Research Scholar

Under the guidance of

Dr. S.P. GUGGARIGOUDAR

BLDE (Deemed to be University)

Department of Otolaryngology and Head and Neck Surgery

Shri B.M.Patil Medical College, Hospital & Research Centre,

Vijayapura, Karnataka

2019

DECLARATION BY THE CANDIDATE

I hereby declare that declaration/ thesis entitled "DEVELOPMENT OF A TOOL TO OBJECTIVELY IDENTIFY NORMAL HUMAN VOICE" is a bonafide and genuine research work carried out by me under the guidance of Dr. S.P. GUGGARIGOUDAR, Department of Otolaryngology and Head and Neck Surgery, Shri B.M. Patil Medical College, Hospital & Research Centre, Vijayapura, Karnataka. No part of this thesis has been formed the basis for the award of any degree or fellowship previously.

Date:

Place: Vijayapura

Signature of the Candidate **Dr. Lathadevi Hassan Thotappa** 11PhD007

BLDE (Deemed to be University), Vijayapura Karnataka,

This is to certify that this thesis entitled "DEVELOPMENT OF A TOOL TO OBJECTIVELY IDENTIFY NORMAL HUMAN VOICE" is a bonafide and genuine research work carried out by Dr. Lathadevi Hassan Thotappa under our supervision and guidance in the Department of Otolaryngology and Head and Neck Surgery BLDE (Deemed to be University), Shri BM Patil Medical College, Hospital & Research Centre, Vijayapura, Karnataka in the fulfillment of the requirements for the degree of doctor of philosophy (Medical).

Dr. S.P. Guggarigoudar Dr. Lath Guide Department Professor Department of otolaryngology and Departmen Head and neck surgery, Hea Shri B. M. Patil Medical College, Hospital &Research aCentre, Vijayapura, Karnataka) Vija

Dr. Lathadevi Hassan Thotappa Professor & HOD Department of otolaryngology and Head and neck surgery Shri B. M. Patil Medical College, Vijayapura, Karnataka

BLDE (Deemed to be University), Vijayapura Karnataka,

ENDORSEMENT BY THE PRINCIPAL/HEAD OF THE INSTITUTION

This is to certify that this thesis entitled "DEVELOPMENT OF A TOOL TO OBJECTIVELY IDENTIFY NORMAL HUMAN VOICE" is a bonafide and genuine research work carried out by Dr. Lathadevi Hassan Thotappa under our supervision and guidance in the Department of Otolaryngology and Head and Neck Surgery BLDE (Deemed to be University), Shri B.M. Patil Medical College, Hospital & Research Centre, Vijayapura, Karnataka in the fulfillment of the requirements for the degree of doctor of philosophy in Otolaryngology and Head and Neck Surgery (Medical).

Date: Place: Vijayapura Seal and Signature of Principal

Dr. Aravind V Patil.

B.L. D.E.(Deemed to be University), SHRI B.M.PATIL MEDICAL COLLEGE, HOSPITAL AND RESEARCH CENTRE,

COPYRIGHT

Declaration by the Candidate

I hereby declare that the BLDE University's Shri B.M.Patil Medical College, Hospital & Research Centre, Vijayapura, Karnataka, shall have all the right to preserve, use and disseminate this declaration/ thesis In print or electronic format for academic/research. BLDE(Deemed to be University), shri B.M.Patil Medical College, Hospital and Research Center, Vijayapura, Karnataka.

Date: Place: Vijayapur Signature of the Candidate
Dr. Lathadevi Hassan Thotappa

Dr. S.P. Guggarigoudar Guide Professor Department of otolaryngology and Head and neck surgery, Hospital &Research Centre Vijayapura, Karnataka)

ACKNOWLEDGEMENT

Firstly, I express my sincere gratitude to my guide, **Dr S.P.Guggarigoudar**, Professor and Head, Department of Otolaryngology, Shri BM Patil Medical College, Hospital and Research Centre, Vijayapura, Karnataka for his masterly directions, constant support and eminent guidance, at every stage of this study. He has place d a full faith and undoubted trust in me which helped me a lot in carrying out my research work successfully.

I owe my most sincere gratitude to **Dr. M.S. Biradar, ViceChancellor** BLDE (Deemed to be University)for the help and support.

I owe my most sincere gratitude to **Dr. Aravind V. Patil**, Principal, ShriB.M. Patil Medical College, Hospital &Research Centre, for the help and support.

I owe my most sincere gratitude to **Dr.J.G Ambekar** Registrar, BLDE(Deemed to be University)and **Mr Satish Patil** Deputy Registrar ,BLDE (Deemed to be University)for the help and support.

I would like to express my very great appreciation to the Vice-principal, Shri B.M. Patil Medical College, Hospital & Research Centre **Dr Tejashwini Vallabha**, **and Dr. S.V.Patil**, Vice Principal (academics) for their support.

I express heartfelt thanks to all the **Members of PhD committee**, BLDE(Deemed to be University) for correcting my mistake throughout my tenure.

I am sincerely indebted to **Dr. Karadi R.N, for** Professor and former Head of the Department of Otolaryngology and Head and Neck Surgery, Shri B. M. Patil Medical College, Hospital & Research Centre, Vijayapura for his support

I would like to express my sincere gratitude to Mr. vijay Chopra, Principal, Sri BM Patil Institute of Nursing Sciences, Sri Yadrami, Former principal, KCP Science college, Vijayapura and Mrs Savita Patil, professor, computer sciences KCP Sciences College, Vijayapura, Smt. Manjula, chief librarian and Mr. Shanwaz, Statistician of Shri B. M.Patil Medical College, Hospital & Research Centre, Vijayapura for their cooperation during the study.

I would like to extend my warm thanks to my Husband Shri. Sachidananda Kumar, my mother Smt. Jayalakshmi, daughter Smt. Madhura HS, Son in law, Sri Rajesh Shivanand and son Manav, without their support and help, I could not dedicate to research and it would have been extremely difficult for me to accomplish this thesis.

I wish to acknowledge the help provided by all my Teaching and non teaching staff of Department of Otolaryngology and Head and Neck surgery. I extend my special thanks to Dr. Shilpa Potnuru for assistance during my thesis.

I sincerely take an opportunity to acknowledge gratitude to all the people without whom this thesis would not have been possible.

Dr. LATHADEVI HASSAN THOTAPPA

B.L.D.E. UNIVERSITY'S SHRI.B.M.PATIL MEDICAL COLLEGE, BIJAPUR-586 103 INSTITUTIONAL ETHICAL COMMITTEE

INSTITUTIONAL ETHICAL CLEARANCE CERTIFICATE

The Ethical Committee of this college met on 29 - 12 - 2011 at 10 - 30 am to scrutinize the Synopsis/Research projects of postgraduate/undergraduate student/Faculty members of this college from Ethical Clearance point of view. After scrutiny the following original/corrected \mathcal{L} revised version synopsis of the Thesis/Research project has been accorded Ethical Clearance.

Title Development of a fool to objectively Vose

Name of P.G./V.G. student/Faculty member Dr. H.T. Lathadev; poof of otoshinolas Name of Guide/Co-investigator Dr. S-P. Gug DR.M.S.BIRADAR. CHAIRMAN INSTITUTIONAL ETHICAL COMMITTEE **BLDEU'S, SHRI.B.M.PATIL** MEDICAL COLLEGE, BIJAPUR.

Following documents were placed before E.C. for Scrutinization
1) Copy of Synopsis/Research project.
2) Copy of informed consent form
3) Any other relevant documents.

Contents

1. Abstract		1
2. Introduction		2
3. Aims and Objectives		5
1. Hypothes	is	6
4. Review of Literature		6
1. Historical	Aspects	7
2. Anatomy		10
•	urtilages and Bones of the Larynx	11
	e Muscles of the Larynx	12
	ructure of Vocal Folds	12
	erve Supply to the Larynx	13
	espiration and Phonation	13
3. Physiolog	-	16
	echanism of Movements of Vocal Folds	16
	echanism of Phonation	16
	e Neural Pathways	16
	omechanics of Phonation	10
	oudness, Pitch, Voice Quality	19
	e Role of Respiratory Tract	19
	bice Resonance and its Modification	19
	nd of Voice Evaluation	22
e	bice analysis, Assessment and Evaluation	26
	bjective Analysis	20 26
	pjective Analysis	28
	coustic Measures	32
5. Materials and Methods		43
	g of Voice Samples	44
	n of Parameters	44
3. PRAAT S		46
6. Observations and Resu	1	50
1. Pitch	10	50
2. Jitter		53
3. Shimmer		55
	to Noise Ratio	57
7. Discussion		59
8. Summary		69
9. Conclusion		69
10. Limitations		69
11. Future Prospects		69
12. Master Chart		07
13. Appendices		
	al Ethical Clearance Approval	
2. Consent H		
3. Proforma		
4. Plagiarisr	n Certificate	
4. Flaglalisi	li Certificate	

- Plagiarism Certif
 Presentations
- 6. Publications

INDEX - Figures & Illustrations

S.No.	Caption	Page No
Fig 1	Speaking Machine replica	7
Fig 2	Thomas Alva Edison with phonograph	7
Fig 3	Development of Larynx	10
Fig 4	Diameters of the Larynx	10
Fig 5	Cartilages & Bone of Larynx	11
Fig 6	Muscles of Larynx	12
Fig 7	Structure of Vocal Fold	13
Fig 8	Nerve Supply to the Larynx	13
Fig 9	Vibratory Pattern of Mucosa	17
Fig 10	F - Configuration	20
Fig 11	Set up for Telescopic Examination of Larynx	28
Fig 12	Videostroboscopy	29
Fig 13	Harmonics	31
Fig 14	Frequency	32
Fig 15	Intensity(Amplitude)	33
Fig 16	Phonetogram	34
Fig 17	Spectrogram	34
Fig 18	Jitter (Frequency Perturbation)	35
Fig 19	Shimmer(Amplitude Perturbation)	36
Fig 20	Harmonics & Noise	36
Fig 21	Voice Recording Set Up	43
Fig 22	Recording of Voice	44
Fig 23	Three Seconds Clip	44
Fig 24	Selection of one Second Clip	45
Fig 25	One Second Clip	45
Fig 26	Voice Report	45
Fig 27	Sex Ratio	50
Fig 28	Pitch Values	51
Fig 29	Box Plot to show Pitch in Males & Females	51
Fig 30	Pitch Ranges (in Hz)	52
Fig 31	Mean Pitch among Males	52
Fig 32	Mean Pitch among Females	52
Fig 33	Jitter Values	53
Fig 34	Box Plot to show Jitter Values	53
Fig 35	Jitter : Ranges	54

Fig 36	Jitter Values in Males	54
Fig 37	Jitter Values in Females	54
Fig 38	Shimmer Values	55
Fig 39	Box Plot to show Shimmer Values	55
Fig 40	Shimmer Ranges in Males & Females	56
Fig 41	Shimmer Ranges in Males	56
Fig 42	Shimmer Ranges in Females	56
Fig 43	HNR Values	57
Fig 44	Box Plot to show HNR Values	57
Fig 45	HNR Range	58
Fig 46	Mean HNR in Males	58
Fig 47	Mean HNR in Females	58
Fig 48	Pitch Comparision	60
Fig 49	Jitter Comparision	61
Fig 50	Shimmer Comparision	62
Fig 51	HNR Comparision	63

INDEX - Tables

S.No.	Caption	Page No.
Table 1	Acoustic Parameters Among Males	50
Table 2	Acoustic Parameters Among Females	50
Table 3	Pitch Values	51
Table 4	Pitch Values – Ranges	52
Table 5	Jitter Values	53
Table 6	Jitter Values - Ranges	54
Table 7	Shimmer Values	55
Table 8	Shimmer Values - Ranges	56
Table 9	HNR Values	57
Table 10	HNR Values - Ranges	58
Table 11	Comparision of Pitch Values	60
Table 12	Comparision of Jitter Values	61
Table 13	Comparision of Shimmer Values	62
Table 14	Comparision of HNR Values	63

ABSTRACT

Acoustic analysis is used to assist differential diagnosis, documentation and evaluation of treatment for voice disorders. Clinical data has shown that Jitter, Shimmer, Mean Pitch and Harmonic Noise Ratio are the indices of voice pathology. A voice with some periodicity can now be analysed with a computerised acoustic analyser, a relatively newer technique that can be widely used in clinical practice.

Objectives : To create a database of normal voices, analyse and identify different parameters of these voices and hence identify benchmarks of normal voices.

Materials and Methods : Voice samples of 458 normal males and 542 normal females aged between 18 to 28 years were collected using a sustained vowel /a/ which was recorded and analysed using a freely downloadable software " PRAAT". The parameters like Jitter, Shimmer, Harmonic to Noise Ratio and Pitch were derived and mean, SD and range of voice parameters were calculated.

Results : In males the value of parameters were mean pitch(137.05), jitter(0.011), shimmer(0.08) and Harmonic to Noise Ratio(20.48). In females the parameters were mean pitch(234.27), jitter(0.01), shimmer(0.08) and harmonics to noise ratio(21.73).

Conclusion : Voices can be objectively analysed using acoustic parameters like mean pitch, jitter, shimmer and harmonic to noise ratio. A large database yields more reliable normative parameters. Institutions should develop their own standard protocol for selection of subjects, recording of voices and their analysis.

INTRODUCTION

Voice is an acoustic output of the vibrations of the vocal folds and is the basic source for speech¹. In contrast, speech is a meaningful acoustic output created by the modulation of voice by organs of articulation into basic building blocks, the 'phonemes'. Phonemes help in distinguishing one word from another in a particular language. Some sounds like clicks, whistling and whispering can be produced by organs of articulations without voice.

Because of anatomical, physiological, racial, cultural and social factors every human voice is unique and like fingetprints is the signature of each individual. It has vital role in both emotional and linguistic communication. For earning one's livelihood and to express feelings in one's occupation and personal interactions voice production skill is a must. Voice can give information about the speaker's age, sex, personality, emotional and health status.

A normal voice is coherent i.e., it is well planned, clear and sensible². It results from the coordinated, intricate movements of the muscles larynx.

This is the most advanced sensorimotor system to be found in the human body. A harsh voice is a serious handicap to the speaker. Social contacts, professional and familial relationships suffer because of changes in voice. Voice disorders in lecturers, teachers, salesmen, actors or singers cause problems in profession.

As said earlier every voice is unique. Even in a given individual, voice can change according to his /her physical and emotional status. Hence defining a normal voice and measuring its parameters for an individual or a population is a difficult task.

It is logical to assume that the parameters of voice can be different for different disease entities. Before trying to correlate the parameters of voice with such entities it becomes obligatory to define what is normal.

The methods being used now by scoring of voice analysis by perception are fairly common. But they are subjective and won't yield to documentation.

The location of vocal folds makes it difficult to physically measure their movements. X-rays and ultrasounds are not of much use because cartilages surround the vocal folds. Video evaluation does not help since the movements of the vocal folds are quite rapid (80 to 300 Hz).^{3,4} Stroboscopy and high speed videography need the instruments to be placed in the throat and cause gagging and laryngeal spasm and stop production of voice. Moreover all these procedures are invasive and cause discomfort to the patient.

Non-invasive physical measurements have a greater advantage in that they yield for an objective and documentable approach and can allow reliable comparison of voice samples (e.g., before and after treatment), therapeutic methods (e.g., microsurgery versus laser) etc⁵.

DEVELOPMENT OF A TOOL TO OBJECTIVELY IDENTIFY NORMAL VOICE

In majority of ENT and Speech Therapy Units clinical evaluation of voice is still perceptive. But the modern era demands a reliable, documentable technique to quantify and standardise voice characteristics⁶.

There are objective methods like computerised voice analysis which are noninvasive, fast and reliable and clinicians can easily setup a system for the purpose.

Though computerised analysis is being extensively used throughout the world no world standards have been established for normative parameters⁷. In a few attempts the data analysed is not large enough to proclaim universality of these parameters. It is needed to test on a larger database to make the parameters more universal.

In Indian context the research carried out is limited and the size of the data tested is quite small. The purpose of the current work is a) to create a large normal voice database of local population b) to evaluate this data and create standardised values of normative parameters.

Reference :

- Mathieson L, Carding P. The Voice and speech production. In: Michael Gleeson.(Ed). Scott-Brown's Otorhinolaryngology and Head and Neck Surgery. 7th ed. London: Hodder Arnold, 2008; p. 2166-72.
- Phoneme -Wikipedia. (n.d). Retrieved September 26, 2018. from https://en.wikipedia.org/wiki/Phoneme
- Voice Analysis Wikipedia. (n.d) Retreived Jan 30, 2017 from http://www.factindex.com/v/vo/voice analysis.html
- Voice Analysis Wikipedia. (n.d) Retreived Jan 29, 2017 from https://wikivisually.com/wiki/Voice_analysis
- 5. Toran KC, Lal BK. Objective voice analysis for vocal polyps following microlaryngeal phonosurgery. Kathmandu University Medical Journal. 2010; (8) 30 : 185-189.
- Mehta DD, Hillman RE. Voice assessment: updates on perceptual, acoustic, aerodynamic, and endoscopic imaging methods. Current opinion in otolaryngology & head and neck surgery. 2008 Jun;16(3):211.
- 7. De Felippe AC, Grillo MH, Grechi TH. Standardization of acoustic measures for normal voice patterns. Brazilian Journal of Otorhinolaryngology. 2006 Sep 1;72(5):659-64.

AIMS AND OBJECTIVES

- 1. To create a database of normal voices
- 2. To analyse and identify different parameters of these voices
- 3. To identify normative values of different parameters

HYPOTHESIS

- 1. Even though voice is different from individual to individual and voice is unique for an individual human brain can identify normal voice and differentiate it from the abnormal.
- 2. Then the brain must be selecting some common parameters of all the voices to differentiate these from abnormal ones.
- 3. These parameters can be isolated from voices of normal indivduals and used to define parameters for normal voice,

HISTORICAL ASPECTS

Since ages the people have been dreaming of holding sounds and listening to it when they wanted.

Wolfgang von Kempelen invented Speaking Machine in 1769¹. It took him 20 years of his life to work on it. It represented the model of the human vocal tract.

Kempelen used kitchen bellows to replace lungs,² A bagpipe's reed replaced vocal cords. He could produce simple vowel sounds. Later he improvised his machine to produce vowels, plosives, nasals and some words. Kempelen finally created a machine to produce 's' 'sh', and 'r' sounds. For the purpose he used several layers of tubes, rods and smaller bellows and a string operated flap to function as throat, nasal cavity, mouth and tongue².

After 40 years, Kempelen's work was well recognised by Charles Wheat stone³. But no development occurred till 19th Century.

Fig 1- Speaking Machine replica built by Department of Phonetics, Saarland University, Saarbrucken, Gremany (Picture in Public Domain)

Fig 2 - Thomas Alva Edison, in 19th century invented the phonograph that could record and reprodue sound⁴ (Picture in Public Domain)

DEVELOPMENT OF A TOOL TO OBJECTIVELY IDENTIFY NORMAL VOICE

Homer Dudley, a Bell Lab engineer, in 1928 developed the 'vocoder' that could code and decode speech signals^{5,6}. This was splitting the voice signal into a number of frequency bands. The same were resynthesised to create original sound.

Homer Dudley, in 1937-38 again invented what he called 'voder'. This was an attempt to synthesize human speech electronically⁷. The speech thus produced had a lot of limitations in range as well as quality. Moreover it was a complex machine and required skill and experience to use it. Still it was a big leap in speech synthesis⁸.

Voiceprinting, a method of identifying a known voice, by aural as well as spectrographic comparision with unknown voices⁹. This was developed by Bell Laboratories in 1940 and was used in forensic laboratories.

In the beginning of 20th century people started to use Phonetics systematically. In Paris the first laboratory for experimental phonetics was established. Tuning forks and simple pneumatic apparatus were used. Speech sounds mainly vowels and their frequency characteristics were studied. Eventually speech labs started being established in different parts of the world¹⁰.

Reference :

- Kempelen W.V., "Le mechanisme de la parole, Suivi de la description d'une machine parlante", J.V.Degen, 1791.
- Wolfgang von Kempelen's speaking machine Wikipedia (n.d.) -Retreived from Dec 24 2018, https://en.wikipedia.org/wiki/Wolfgang_von_Kempelen%27s_speaking_machine
- Wheatstone C., "The scientific papers of Sir Charles Wheatstone Taylor and Francis", London, 1879.
- Phonograph Wikipedia. (n.d.) -Retreived Dec 24, 2018, from https://en.wikipedia.org/wiki/Phonograph#Early history
- Vocoder Wikipedia- (n.d.) -Retreived from Dec 25, 2018, from https://en.wikipedia.org/wiki/Vo2. coder
- Volta Laboratory and Bureau Wikipedia- (n.d.) -Retreived Dec 25, 2018, from https://en.wikipedia.org/wiki/Volta_Laboratory_and_Bureau
- 7. Voder Wikipedia- (n.d.) -Retreived Dec 24, 2018, from https://en.wikipedia.org/wiki/Voder.
- Dixit VM, Sharma Y. Voice Parameter Analysis for the disease detection. Journal of Electronics and Communication Engineering. 2014 Jan;9(3):48-55.
- Steve Cain, Lonnie Smrkovski, Mindy Wilson. Voiceprint Identification. Expert Pages, [accessed on Dec 24 2018] Available from https://expertpages.com/news/voiceprint_identification.htm
- Laboratories of experimental phonetics. Experimental methods in Phonetics -(n.d.)Retreived Dec, 7 2017 from http://lib.chdu.edu.ua/pdf/pidruchnuku/18/83.pdf

ANATOMY

The tracheobronchial diverticulum appears at the 4th week of development from the anterior wall of the primitive pharynx. A partition called esophageal septum develops which fuses at the caudal level leaving an opening at the upper end at the pharynx. This results in a tube forming respiratory tract. Larynx and trachea are developed by its upper end. The lower end of the primitive pharynx develops into bronchi and lungs¹. The cartilage, muscle and blood vessels of bronchi and lungs develop from the mesenchyma of the endoderm of foregut. By the side of this tube arytenoids and the aryepiglottic folds develop. Hypoglossal eminence gives rise to epiglottis. Fig.1 shows the development of Larynx.

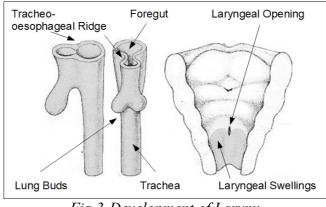


Fig.3-Development of Larynx

Larynx is a membrano-cartilaginous tube lying opposite to the cervical 3rd to 6th vertebra. It is funnel shaped in infants but softer and more compressible than adult. The size of larynx is more or less same in children in both sexes but changes after puberty. The anterio-posterior length at glottis level is 23-24 mm in females and 35-36 mm in males. The width of the larynx at the same level is 36-37 mm in females and 40-44 mm in males². The dimensions are dipicted in Fig.2

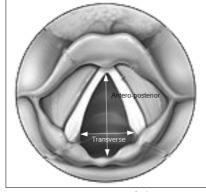


Fig.4 - Diameters of the Larynx

The larynx is divided into glottis, supraglottis and subglottis. The glottis includes vocal cords and their superior and inferior surfaces, anterior and posterior commissures. The part of the larynx above the glottis is called as supraglottis and contains epiglottis, aryepiglottic folds and false vocal cords. The area below the glottis upto the first tracheal rings is subglottis.

Cartilages and bones of the Larynx

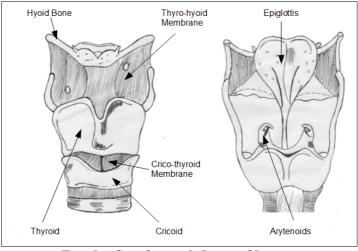


Fig. 5 - Cartilages & Bone of Larynx

Thyroid cartilage : The thyroid has two lamina fusing anteriorly at the midline. It makes an angle of 120 degree in females and 90 degree in males. The inner aspect of Thyroid has attachment of thyroepiglottic ligament from base of epiglottis. Below this both ventricular folds and true vocal folds attach on either side of the midline. Here, there is attachment of thyroarytenoid and vocalis muscle to result in anterior commissure.

Epiglottis : It is a leaf like fibro-cartilaginous structure that is attached to the inner lining of the thyroid cartilage at almost mid level. The aryepiglottic folds arise from the sides of the epiglottis and end at the arytenoid swellings.

Arytenoid cartilages: They are wedge shaped cartilages which are attached to vocal folds anteriorly through vocal process. Laterally its muscular process gives attachment to posterior and lateral cricothyroid muscle. Anterolateral surface has two attachments, upper part to vestibular ligament and lower part to vocal ligament.

Cricoid cartilage : It is the only complete circumscribed cartilaginous ring that encircles and makes subglottic part of the larynx. It has lamina posteriorly and arch anteroirly. It continues as trachea caudally and attaches to cricothyroid ligament superiorly. Arytenoid cartilages are attached to the upper surfaces posteriorly.

Corniculate and cuneiform cartilages : These are small cartilages attached to upper surface

of the arytenoids.

Hyoid bone : It is a thin ribbon like bone which is above the thyroid cartilage. It is 'U' shaped and has a body, greater cornu and lesser cornu. Thyro-hyoid membrane attaches this bone to the thyroid cartilage.

The muscles of the larynx¹

A. Extrinsic muscles of larynx: These muscles have attachments to the outside structures.

Suprahyoid muscles :They arise from skullbase and attach to hyoid. They are Mylohyoid, digastric, stylohypod and geniohyoid muscles. (Elevators of larynx)

Infrahyoid muscles : They arise from sternum and larynx and attach to hyoid. These are Sternohyoid, thyrohyoid, omohyoid and sternothyroid are the muscles.

B. Intrinsic muscles of larynx: They arise within the larynx and attach to different structures larynx.

Abductors of Larynx : Posterior cricoarytenoid muscle is the only abductor of larynx.

Adductors of Larynx : These are Lateral cricoarytenoid muscle, Transverse arytenoids, Thyroarytenoid muscle and Cricothyroid. Vocalis muscle changes the thickness of the vocalfolds. The muscles of larynx are depicted in Fig.4

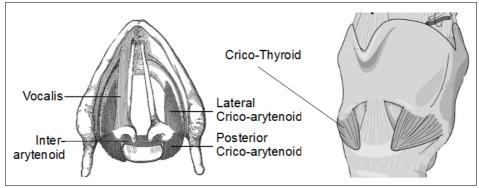


Fig.6-Muscles of Larynx

Structure of Vocal folds²

Vocal folds arise from vocal process of arytenoids and run up to the posterior surface of the thyroid lamina. It has 5 layers.

- 1. Epithelium-superficially squamous epithelium (non keratinising) is present
- 2. Lamina propia-Gelatinous subepithelial layer(Reinke's space)
- 3. Intermediate layer-Elastic and collaginous layer forming vocal ligament and vocalis muscle lying lateral and deep.
- 4. Deep layer of lamina propia- macula flavae are cushion like structures which helps in

protecting the ends of cords during vibration.

5. Vocalis muscle-It is a part of thyroarytenoid.

The following figure shows the structure of Vocal Folds.

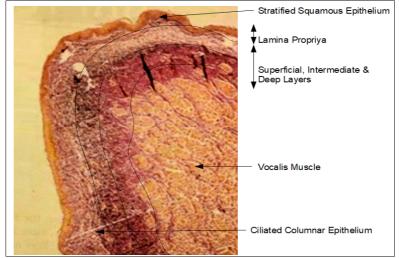


Fig.7- Structure of Vocal Fold

Nerve Supply to the Larynx

The superior and recurrent laryngeal branches of the vagus nerve provide both sensory and motor supply³. The superior laryngeal nerve arises from the inferior ganglion of vagus and supplies motor fibres to crico-thyroid muscle and sensory to the mucosa of the supraglottis through its external and internal branches respectively. The recurrent or inferior laryngeal nerve arise a little lower down , enters the thorax to hook around subclavian artery and aorta to return to the larynx. Rest of the muscles and the mucosa get their nerve supply through the recurrent laryngeal nerve.

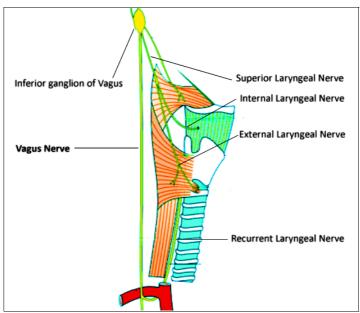


Fig.8 -Nerve Supply to the Larynx

Respiration and Phonation

Phonation is due to the vibrations of the vocal folds caused by forced passage of air through the glottis⁴. As such the larynx functions as a reed instrument. The lungs during expiration act as bellows and push air through the glottis. The vocal folds are the reeds. The larynx continues down into trachea which bifurcates into left and right principal bronchi. Each principal bronchus further divides into secondary and tertiary segments and bronchioles. Bronchioles terminate as small air sacs, the alveoli. The diaphragm lies at the base of thorax and is the main muscle of inspiration. As this muscle contracts and descends, air is sucked into the lungs through respiratory passage. Muscle of the rib cage wall, the external and internal intercostal, sternomastoid, pectoralis major and minor, scalene group, serratus group, latissmus dorsi and the muscle of the abdominal wall, the external and internal oblique, rectus abdominus and transversus abdominus do take part in expiration and phonation especially during production of loud sounds and in singing.

References :

- Nigel Beasly. Anatomy of larynx and tracheobronchial tree. In: Michael Gleeson.(Ed). Scott-Brown's Otorhinolaryngology and Head and Neck Surgery 7th ed. London; Hodder Arnold; 2008.p 2130-45.
- Gerhard. F, Georg PH, Gross anatomy of Larynx. In: Benninger.MS.(Ed). Sataloff's Comprehensive textbook of Otolqaryngology Head and Neck surgery. 1st ed. New Delhi, The Health Sciences Publisher, 2016; p 23-43
- 3. Friedrich G, Lightenegger R. Surgical anatomy of the Larynx. J Voice. 1997;11(3):345-55
- 4. Boone DR, McFarlane SC, Berg SLV, Zraik RI. The voice and Voice Therapy. 8th edition, Boston: Allyn and Bacon; 2010.

PHYSIOLOGY

Though phylogenetically larynx came into existance to protect the lower respitory tract, in humans voice production has become a vital function. The production of voice is effected by the controlled movements of the vocal folds and their tension. The vocal folds can be adducted and abducted through the actions of the intrisic muscles of the larynx. Laryngeal mechanoreceptors present in the mucosa of the larynx are sensitive to the airflow and the muscle stretch. The afferent information sent by them help in protection of the airway as well as in modulation of voice¹.

Mechanism of Movements of Vocal fold

The arytenoid cartilages rotate in an almost vertical axis. The posterior coricoarytenoid muscle rotates the cartilage internally thereby bringing the vocal process laterally along with the attached vocal process thus effecting abduction and widening of the glottis. The lateral cricoarytenoid and interarytenoid muscles rotate the arytenoid cartilage in externally and cause adduction. The cricothyroid muscle increases the distance between the arytenoid and thyroid cartilages thereby lengthening the vocal fold and increasing the tension. In this process it effects some adduction also. The vocalis muscle changes the thickness of the vocal fold. Extrinsic Muscles like sternohyoid, thyrohyoid, and omohyoid muscles, exert downward traction on the larynx. This action causes abduction of the vocal folds. The geniohyoid, anterior belly of the digastric, mylohyoid, and stylohyoid muscles exert upward force causing adduction².

The mechanism of Phonation

Voice production is said to be due to complex interaction between cerebral cortex, periaqueductal matter of midbrain and other subcortical loci³. According Davis et Al, the major categories of voiced and voiceless sound sounds are represented in periaqueductal matter of midbrain. Integration of cortical and subcortical aspects of language with basic respiratory and laryngeal motor pattern are integrated by this area of the brain. Phonemic differences, intonation and emotional aspects of the speech are controlled by the subcortical neural system. nucleus retro ambigualis controls vocalization, generation of respiratory pressure and coughing.

The Neural Pathways

The pathway for phonation starts in the motor cortex specifically in the precentral gyrus on both sides. The upper motor nerve fibres synapse with lower motor neurons by descending down to medulla. Some fibres decussate to the opposite side. Some of the neurons of the pyramidal tract have multiple offshoots and synapses with the basal ganglia and reticular formation⁴. Glossopharyngeal and vagus nerves get some connections from the frontal portions of pyramidal system and help in controlling articulation, phonation and respiration. Extrinsic and intrinsic

muscles of larynx can be controlled voluntarily. Before phonation there will be pre-phonatory tuning. This is followed by the phasic, tonic and volitional contractions and also maintainance of length, tension, bulk and position of the vocal folds. The abdominal and intercostal muscle contractions are also regulated to maintain optimum subglottic air pressure.

Biomechanics of Phonation

Henry J Rubin (1960)⁵ refers to the neurochronaxic hypothesis of Husson(1950). Husson presented the neurochronaxic hypothesis. According to this theory vocal fold vibrate rhythmically by receiving synchronous impulses through the nerves so that each vibratoion was caused by a separate neural impulse. He refutes neurochronaxic theory since it is physiologically not possible.

Johannes Muller in 1839 introduced myoelastic-aerodynamic theory of phonation. The vocal folds which are essentially passive are set into vibration by the rapid escape of air. The myoelastic refer to the tension and elasticity of the vocal folds. The dynamics of the passing air is the aerodynamic component. In 1958, Van Den Berg JW, modified this theory by adding that for the vocal folds to be sufficiently approximated the explanation can be given by Bernoulli Principle⁶. Subglottic pressure drives the vocal folds apart provided they are adequately adducted allowing the air to escape through glottis. According to him adequate adduction is necessory for the subglottic pressure to build up and drive the vocal folds².

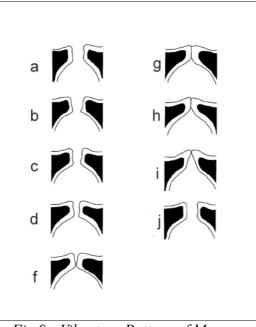


Fig 9 - Vibratory Pattern of Mucosa

Normal phonation requires that five conditions be satisfied.

1. The power of voice is generated by the building of pressure by breathing. This should create

a small gap in the glottis at the vibrating edges of the vocal folds.

- 2. The vocal folds should be anatomically and functionally favavourable for voice production.
- 3. The air is inhaled to fill the lungs, the glottis is closed, the vocal folds take a midline position.
- 4. On exhalation subglottic pressure builds up and the vocal folds are driven laterally. This results in sudden decrease in subglottic pressure. Elastic recoil forces in the vocal fold and the Bernoulli effect of airflow contributes to the return of the vocal folds to the midline. the Cycle is repeated when the vocal folds come to the midline and pressure in the trachea builds again.
- 5. A sufficient subglottal pressure of 3-5 cm of H2O is required to build up to blow the vocal cords apart.

This concept of phonation describes vocal fold to have three layers⁷.

- 1. Body = Vocalis muscle and fibrous band
- 2. Transition Zone = superficial lamina propia
- 3. Cover = epithelium

The body of the vocal fold remains relatively static. The wave propagates in the mucosa, the cover. This wave begins on the inferomedial aspect of the vocal fold and moves caudally. The lower edges close as the superior edges of the vocal fold begin to separate. As the superior edges of the vocal folds separate, airflow through the divergent glottis generates greater negative pressure at the lower edge of the vocal folds, accelerating closure of the inferior glottis.

Vocal Registers

Vocal folds are capable of producing several different vibratory patterns that cause vocal registers. Clifton Ware⁸ defines vocal registers as "A series of distinct, consecutive, homogeneous vocal tones that can be maintained in pitch and loudness throughout a certain range." A particular vibratory pattern of the vocal folds create a range of tones called vocal registers⁹. Modal voice(or normal voice), vocal fry, falsetto and the whistle are different kinds register¹. Of these, whistle has the highest pitch and the vocal fry the lowest.

Falsetto

Vocal fold that are lengthened, thinned and tensed produce falsetto voice. The frequency band is 300-600Hz.

Modal

The vocal cord vibrate along the whole length of the free edge like figure of eight. The frequency is as in conversation and singing i.e. at the range of 100-450 Hz¹ vocal fry

This has lowest vocal frequencies of 30-90Hz. Each vibratory cycle has long closed phase.

Loudness

It is the perceptual correlate of intensity of the sound. The factors that determine loudness are 1. Medial compression of vocal cords 2. The amount of Subglottic pressure 3. The duration, speed and degree of vocal fold closure¹

Pitch of voice

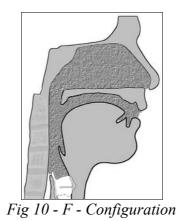
It is the perceptual correlate of the frequency or vocal fold vibration. The determinants of pitch are the following -Length of vocal folds -Mass of vocal folds per unit per length -Tension of vocal folds. The Cricothyroid and Thyrovocalis are the main tensors that alter the pitch¹.

Voice quality

The voice quality distinguishes one from other voices of similar loudness and pitch¹⁰. The exact biomechanical determinants of the voice quality is still not known. The harmonics produced by a particular individual are unique for that individual and determine the quality. The anatomy and the functional differences determine the harmonics.

The role of respiratory tract

The subglottic pressure is the main reason for the primary driving force of the voice. The inspiration is due to active muscle contraction of diaphragm and external intercostals. This results in thoracic cage enlargement. Afterwards the air is expired and thoracic cage is decreased in size due to passive collapse of lungs¹¹.


The *passive forces* of expiration tend to generate force during inhalation that works to restore the lung and rib cage system. After active inhalation, these passive forces of exhalation rebound to provide some of the expiratory force needed for speech¹². There is nearly linear relationship between relaxation and lung volume in the range between 20% and 70% of the vital capacity. This curve represents the pressure generated by the passive factors of the respiratory system. The voice qaulity is the best when passive forces are used for speech production.

Active forces : Sometimes active exhalation is done by muscles of respiration to produce speech. Sometimes abdominal muscles are also used. Vocal abuse can happen if the person uses the vocal folds squeezed in closed position instead of muscles of active forces. The vocal quality of most dysphonic patients can be changed by instructing them to use mid range of air pressure and lung volume¹².

Vocal resonance and its modification

The signal produced by vocal cords is weak and reedy. It sounds like a bleat of baby lamb. The vocal tract resonates and modifies this signal to produce a good voice quality. Finally the

basic fundamental frequency produced by the vocal cords and the harmonics added by the vocal tract determine the timbre or the quality of voice.

Since the anatomy of the vocal tract is unique for an individual and consequently the quality. The vocal tract, the resonator resembles the alphabet 'F' hence its structure is often refered as F Configuration¹².

References :

- Gerhard. F, Georg PH. Biomechanics, Fundamentals of vibration, and Airflow. In: Benninger MS.(Ed). Sataloff's Comprehensive textbook of Otolqaryngology Head and Neck surgery. 1st ed.vol.4. New Delhi: The Health Sciences Publisher. 2016; p. 51-62.
- Jiang JJ, Hoffman MR. Biomechanics, Fundamentals of vibration, and Airflow. In: Benninger MS.(Ed). Sataloff's Comprehensive textbook of Otolqaryngology, Head and Neck surgery, 1st ed.vol.4. New Delhi: The Health Sciences Publisher. 2016; p. 51-62.
- 3. Davis PJ, Zhang SP, Winkworth A, Bandler R. Neural control of vocalisation:Respiratory and emotional influences. J. of Voice. 1996;10(1):23-38.
- Mathieson L, Carding . The physiology of larynx. In: Michael Gleeson.(Ed). Scott-Brown's Otorhinolaryngology, Head and Neck Surgery. 7th ed. London; Hodder Arnold: 2008 p 2156-62.
- Henry JR. Neurochronaxic theory of voice production/a refutation. Arch Otolaryngol. 1960;71(6):913-920
- Van Den Berg J.W. Myoelastic-aerodynamic theory of voice production. J speech hear res. 1958;(1):227-43
- 7. Hirano. M. Clinical examination of voice. New York. Springer-Verlag;1981.
- Ware C. Basics of Vocal Pedagogy: The Foundations and Process of Singing. New York: McGraw-Hill; 1998.
- Vocal register Wikipedia.-(n.d.)-Retreived from May, 28, 2018. https://en.wikipedia.org/wiki/Vocal_register
- Mcglashan J, Fourcin A, Objective evaluation of Voice. In: Michael Gleeson.(Ed). Scott-Brown's Otorhinolaryngology and Head and Neck Surgery. 7th ed. London; Hodder Arnold; 2008.p155-65
- 11. Hixton, Hoit. J D. .Evaluation and management of speech breathing disorders: Principles and methods. Tucson AZ: Reddington Brown; 2005.
- Boone DR, McFarlane SC, Berg SLV, Zraik RI. The voice and Voice Therapy. 8th edition, Boston: Allyn and Bacon; 2010.

BACKGROUND OF VOICE EVALUATION

From time immemorial, clinical assessment of voice disorders has been a real challenge to clinicians and voice pathologists. This is because the patients typically disagree for any type of their voice qualities. The measures of voice were studied from long back dating at least to Romans. Some of the scales of quality measures are not changed even after 2000 yrs. Austin(1806) refers to the proposals by Julius Pollux of 2nd century to describe voice like harsh, clear, bright, smooth, weak, shrill, deep, dull, thin, hoarse, and metallic¹.

Voice assessment by looking at severity, roughness, weakness and strain was proposed by Hirano(1981 GRBAS Scale).²

Due to a lot of controversies regarding reliability and validity of earlier proposals a new "*Consensus Auditory Perceptual Evaluation of Voice – CAPE V*" was proposed(Kreiman, J)³

Perceptual evaluation has several limitations like scale validity, reliability and definition of severity problems. These affect utility in the clinics and outcome measures, evidence based medicine and credibility in medico-legal cases⁴.

The method of evaluation of quality of voice by a jury consisting of professionals though considered as most reliable in routine practice it is difficult to execute and reproduce⁵.

In 1977, Hilman et Al felt that there was a need for an objective assessment that would give more insight into voice production and is more reliable⁶.

Way back in 1963 Von Leden⁷ used ultra slow motion pictures and observed vibratory patterns of vocal folds. Authors like Yumoto, Gould & Baer(1982) considered shimmer and harmonics-to-noise ratio in their studies⁸.

Yumoto, in a study of 87 pathological voices found a significant correlation of harmonic noise ratio, jitter and spectrographic classification with psychological and physical degree of hoarseness⁹.

Robert Hillman et al⁶ demonstrated, to a high accuracy that acoustic measures can determine presence or absence of voice disorder.

Klinghotz et al¹⁰ in his studies concluded that jitter perturbations are more efficient to discriminate functional disorders.

Because of profound advancements in information technologies many softwares were developed during 1990s.¹¹ MDVP¹², DR SPEECH¹³, Vagmi¹⁴, Computerized Speech Laboratory¹⁵, PRAAT¹⁶, and a hand marking voice analysis etc, are some of the systems developed for acoustic analysis.

They are useful in managing Speech Disorders, Communication, Disorders of

Language Delay, Hearing Impaired etc. They can also encompass digital stroboscopy systems, general endoscopy systems, swallowing and speech assessment, and therapeutic endoscopes. Some were deviced even for works like acoustic analysis tool used in the diverse fields of medicine, speech pathology, linguistics, bioacoustics, forensics, and military intelligence.

Many clinicians started using the same and analysed the voice samples for parameters like Jitter, shimmer, HNR, SNR, F0 etc, upto 30 parameters. Some were customised programs and adapted their own softwares and calculations. Hence the values of parameters measured were different from each other¹⁷.

Haldun Oguzi et Al randomly selected 47 normal and abnormal voices and obtained jitter, shimmer and noise-to-harmonics ratio through two softwares - Praat¹⁶ and MDVP¹². Both gave similar results for fundamental frequency and shimmer. However jitter and noise-to-harmonics were significantly different¹⁸.

Dibazar et al studied 700 subjects and tried automatic detection of abnormal voices¹⁹. They used non-invasive, fully automated measures that were non-expensive. The tool used was a Mel-frequency filter bank cepstral coefficients. These were designed using by "Gaussian mixtures in a hidden Markov model(HMM) model".

Orozco et al also tried automatic detection of abnormalities in voice production system. They estimated non-linear dynamic features using recordings of continuous text reading. Their results were successful to the tune of 95%. They opined that to detect abnormal voices non-linear dynamics studies are quite efficient²⁰.

The recent advances mentioned above are still under experimentation and are not available universally.

References :

- Austin, G. (1806). Chironomia. London: Cadell and Davies. Reprinted by Southern Illinois University Press, Carbondale, IL; 1966.
- 2. Hirano M.Psycho-acoustic evaluation of voice: GRBAS Scale for evaluating the hoarse voice. Clinical examination of voice. London: Springer; 1981.
- 3. Kreiman J., Gerratt BR. Validity of rating scale measures of voice quality. Journal of the Acoustical Society of America, 104: 1598-1608.
- 4. Kreman J, Gerratt BR, Kempster GB et al. Perceptual Evaluation of Voice Quality; Review, Tutorial, and a framework for Future Research. J of Spee Hear res. 1993; 36(1): 21-40
- 5. Hartl DM, Hans S, Crevier Buchman L, Laccourreye O, Vaissiere J, Brasnu D. Dysphonia: current methods of evaluatio. Ann Otolaryngol Chir Cervicofac. 2005;122(4):163-72.
- Hillman RE, Montgomery WW, Zeitels SM. Appropriate use of objective measures of vocal function in the fd multidisciplinary management of voice disorders. Cur Opinion in Otolaryngol & H and N Surg. 1997; 5: 172–75.
- Moore GP, White FD, Von Leden H. Ultra high speed photography in laryngeal physiology. Journal of Speech and Hearing Disorders. 1962 May;27(2):165-71..
- Yumoto E, Gould WJ, Baer T. Harmonic to Noise Ratio as an index of degree of hoarseness. J Acoustic Soc America. 1982 Jun; 71(6): 10544-50.
- 9. Yumoto E, Sasaki Y, Okamura H. Harmonics-to-noise ratio and psychophysical measurement of the degree of hoarseness.J Speech Hear Res. 1984 Mar;27(1):2-6.
- Klingholz F, Martin F. Quantitative spectral evaluation of shimmer and jitter. J Speech Hear Res. 1985 Jun;28(2):169-74.
- Boone DR, McFarlane.SC, Shelley L, Berg V, Zraick RI. The Voice and Voice Therapy. 8th Edition. Boston: Pearson ;2005.
- 12. Multi-Dimensional Voice Program 3.3. Software Informer. Retreived from May 8 2018. Available from https://multi-dimensional-voice-program.software.informer.com/
- 13. Tiger DRS Inc. Retreived from May 8 2018. Available from http://www.drspeech.com/
- Voice and speech Systems. Retreived from May 2018. Available from https://www.vagmionline.com/
- Romak JJ, Heur RJ, Hawkshaw MJ, Sataloff RT. The Clinical Voice Laboratory. In: Sataloff RT (Ed). Professional Voice - The Science and Art of Clinical Care. 4 th edition. San Diego, CA: Plural Publishing, 2017; p. 405-439.
- Boersma P., Weenink D., "PRAAT: Doing phonetics by computer", Version 4.3.14, Computer program, 2005.

- 17. Filleppe ACN, Maria HM, Martelletti G, Thaís HG. Standardisation of acoustic measures for normal voice patterns. Rev bras otolaryngol. 2006 ;72 (5): 659-664.
- Haldun O, Mehmet Ak, Mustafa AŞ. Comparison of results in two acoustic analysis programs: Praat and MDVP. Turk J Med Sci. 2011; 41 (5): 835-841.
- 19. Dibazar and S.S.Narayanan. Feature analysis for Automatic detection of normal and pathological–MFCC. A paper presented at; Engineering in Medicine and Biology, 2002. Proceedings of second joint at 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, Oct .2002. Houston, TX, USA, USA
- 20. Orozco JR, Vargas JF, Alonso JB, Ferrer MA, Travieso CM, Henríquez P. Voice pathology detection in continuous speech using nonlinear dynamics. In2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA) 2012 Jul 2 (pp. 1030-1033). IEEE.

VOICE ANALYSIS, ASSESSMENT AND EVALUATION

Since voice may be affected by physical, emotional, professional and social factors the Clinician, ENT surgeon or speech pathologist has to evaluate the patient in entirety. The enquiry should be exhaustive and should consider all these factors. Authors like Sataloff and Daniel R.Boone have refered to protocols of enquiry proposed by different authors^{1,2}.

In 2004 American Speech-Language-Hearing Association (ASHA) gave a comprehensive protocol for voice assessment, evaluation and treatment³,.

- 1. Auditory and visual status assessment
- 2. Case history, particularly vocal usage, occupation, medical status, vocation, cultural and linguistic background
- 3. Examination of the patient by standardised and non-standardised methods
 - 1. Perceptual analysis of vocal production
 - 2. Acoustic analysis of voice
 - 3. Physiological aspects of vocal behaviour
 - 4. Patient's ability to modify behaviour
 - 5. Psychologjcal/Emotional status
 - 6. Medical history
 - 7. Review of articulation, fluency and language
 - 8. Functional consequences of voice disorder
- 4. Use of instruments and perception including
- 5. Videostroboscopy
 - 1. Electroglottography
 - 2. Aerodynamic measures
 - 3. Acoustic analysis
 - 4. Perceptual ratings

Subjective Analysis

The trained clinician can assess one's voice by listening to it. He/she will consider different parameters like loudness, pitch and timbre. The method does not require any instrumentation and is fast, fairly accurate and comparable among different evaluators. However, since it is still subjective, objective documentation is not possible.

Different scales are proposed for the assessment. The following two are commonly

used.

GRBAS Scale.⁴

GRBAS Scale was Developed by Committee for Phonatory Function of the Japanese Society of Logopedics and Phoniatrics. It is one of the commonly used scales. The parameters considered are

- 1. Grades of Severity
- 2. Roughness
- 3. Breathiness
- 4. Asthenia
- 5. Strain

The gradings are 0,1,2,3 and 4 for normal, mild, moderate and severe abnormality respectively. *CAPE V* (*Consensus auditory perceptual evaluation of voice*)⁵

Speech pathologists are increasingly using this scale. This was introduced by International Conference sponsored by Special Interest Division of Voice and Voice Disorders of the American Speech-Language-HearingAssociation in June 2002. It is visual analogue scale of 100mm line. The test material is six standard sentences, two sustained vowels, and 20 seconds of natural speech. The parameters evaluated are roughness, strain, pitch, severity, breathiness and loudness. A more severe deviation from normal quality is indicated by higher scores⁶.

Material for evaluation

A vowel sustained for some time, a phrase, a running or spontaneous speech or a passage read are used for perceptual evaluation⁷. In a given scale, extreme ends of the spectrum (normal and severe) are rated more reliably than the intermediate points.

The sustained vowels

In clinical practice sustained vowels are commonly used. /a/, /e/, /u/ at comfortable loudness and pitch are generally used as they are simple and easy to measure.

In a recorded file of sustained vowel, the onset and end portions are unstable. The midportion of the file is thought to be more stable and represent the intrinsic quality of a voice.

Connected speech

Connected speech (running or spontaneous speech or a passage read) is nearer to day to day normal conversation.

Consonant-vowel sequences for speech

Rapid voice alterations like alternate voiceless consonants with a vowel, e.g. 'pu-tuku' or 'pu-terr-kerr' test the diadochokinetic sound sequencing capabilities. Sound sequence as pupu-pu.... pronounced rapidly provide an assessment of the resistance of the laryngeal airway⁸.

Objective Analysis

Visualisation of larynx and vocal tract

- 1. Indirect laryngoscopy
- 2. Flexible laryngoscopy
- 3. Rigid videolaryngoscopy
- 4. Videostroboscopy

Indirect Laryngoscopy

Involves examination of the larynx using an indirect laryngral mirror.⁹ This procedure has been adopted by ENT surgeons for ages. It has the convenience of a less expensive, simple opd procedure without the use of an elaborate equipment. However, the visualisation is not perfect with some hidden areas of larynx not seen, illumination is not very good and there is no magnification. It may not be possible to perform in children and in some individuals producing gag reflex. *Angled telescopic assessment of Larynx*

Fig 11 - Set up for Telescopic Examination of Larynx

The rigid Hopkins Telescopes of 70 or 90° angled lenses can be used to view the larynx. They have higher optical resolution and good illumination that help in detailed assessment of larynx.¹⁰ After anaesthetising the pharynx with a local anaesthetic the tongue is pulled forward by holding with a gauge piece and the telescope, connected to a camera and monitor is introduced just behind the soft palate. Structures all the way from the base of the tongue to the tracheal rings are examined methodically. The movements of the vocal cords are noted. The procedure has the advantage of excellent illunation, good magnification and possibility of recording.

Flexible laryngoscopy²

Under surface anaesthesia the scope is passed through the nose along the floor and negotiated all the

way to the introitus of the larynx. The vallecula, epiglottis, aryepiglottic folds. False and true vocal cords, commissures, subglottis and the tracheal rings are visualised systematically.¹¹

Rigid laryngoscopy¹⁰

Under general anaesthesia the rigid laryngoscope is passed through pharynx to visualise larynx. Anterior commissure scope is useful for viewing anterior commissure and anterior part of glottis. Suspension laryngoscope makes both hands free to operate for microlayngeal surgery by using the microscope.²

Contact endoscopy and microlaryngoscopy

This is more of a research tool wherein Methylene blue or Lugol's iodine is applied to surface of larynx. Using a microscope with magnifications of 150x and 60x the cell morphology like nuclei and cytoplasm can be studied. Premalignant changes can be easily noted early.¹² *Electroglottography (EGG)*

It is a graphical tracing representing the electrical current conducted through laryngeal tissues.¹³ Being a good conductor of electricity, the laryngeal tissues can conduct the current when both vocal cords come together. On the anterior part of neck, at the level of thyroid lamina, two electrodes with a high-frequency, low-current signal are placed and measure the conductance or impedance between them.

Videostroboscopy

Fig 12 - Videostroboscopy

Videostroboscopy is the most practical and useful technique for clinical evaluation of the movements of the vocal cords.¹⁴ Cycle to cycle variations of vocal cords with vibration and visco-elastic properties of mucosa can be studied with this advanced imaging technique.¹⁵.

DEVELOPMENT OF A TOOL TO OBJECTIVELY IDENTIFY NORMAL VOICE

*Physical principle and concept of stroboscopy*¹⁶

A pulsatile light thrown through an endoscope creates an illusion of slow motion of the vocal cords. The rate of pulsations can be adjusted so as to make the vocal folds appear in slow motion or stationary. This way the cycles of vocal fold vibrations can be visualised in isolation. The equipment also has the provision to automate the flashing rate in synchrony with the rate of vocal fold vibrations. This way we can assess phase symmetry, regularity, glottal closure, amplitude, mucosal wave, vibratory behavior, level of the vocal folds, phase closure, supraglottic activity and free edges of the vocal folds. The observations can be recorded.

Laryngeal ultrasonography or Ultrasound glottography-(UGG)

A less commonly used tool that can give some information about the structure of the larynx and movements of the vocal cords¹⁷.

Newer laryngeal imaging technologies

Newer laryngeal imaging techniques like high speed videoendoscopy, magnetic resonance imaging, and optical coherence tomography have been proposed but have not established as regular tools¹⁸.

MDVP¹⁹, DR SPEECH²⁰, Vagmi²¹, Computerized Speech Laboratory²², Frequency Analyser²³ and PRAAT²⁴ etc, are some of the systems developed for acoustic analysis.

Kay Elemetrics Corp. developed Multi-dimensional-voice-program and released their first version 3.18 in 2009¹⁹

Dr.SPEECH : Daniel Huang, the director of the Speech and Hearing Sciences Key laboratory at East China Normal University in Shanghai, China, has developed a complete platform for comprehensive management of speech. Dr. SPEECH claims to be useful in managing Speech Disorders, Communication, Disorders of Language Delay, Hearing Impaired, Learning Disabilities, Brain Injuries, , Cerebral Palsy and more²⁰.

Dr. T.V Ananthapadmanabha, through *Voice and Speech Systems* (founded in 1985) has developed VAGMI. VAGMI is said to be specially designed for Indian Languages. It is more of a tool for speech pathologists and therapists than for basic analysis²¹.

Pentax Medical has a comprehensive equipment that encompasses digital stroboscopy systems, general endoscopy systems, swallowing and speech assessment and therapeutic endoscopes to include Computerized Speech Laboratory²².

Frequency Analyzer System invented by Harry R. Foster, East Orange, and Elmo E. Crump at Ohmega Laboratories is a sound spectrograph device. The Sona-Graph is the commercial form of Frequency Analyzer System manufactured by KayPENTAX, a benchmark acoustic analysis tool used in the diverse fields of medicine, speech pathology, linguistics, bioacoustics, forensics, and military intelligence²³.

Praat is one of the most common tools used in voice analysis. It has also got support for speech synthesis and articulatory synthesis. It is a free software package designed, by Paul Boersma and David Weenink of the University of Amsterdam.²⁴

Voice Analysing Techniques

Speech contains the basic sound produced by the vocal folds along with the resonance caused by the vocal tract and the modification added by the organs of articulation like lips, tongue, palate etc. Linear predictive coding is a mathematical model and an electronic procedure wherein the overall sound of speech is filtered to leave behind only the sound produced by vocal folds-residue.²⁵

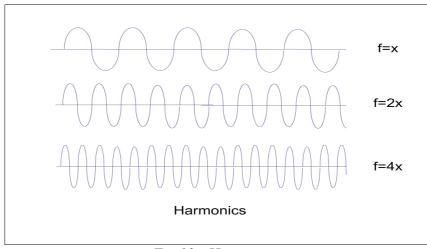


Fig 13 - Harmonics

A natural sound, unlike the sound produced by a tuning fork or an audiometer is not a pure tone with only one frequency. It always contains overtones or *harmonics* and some noise. Harmonics are the integral multiples of the fundamental frequency. The *Discrete Fourier transform* (*DFT*) decomposes such a sound into its constituent frequencies. This is done by complex mathetical algorithms and electronic equipment.

The fast Fourier Transform(FFT) is a mathematical tool for computation. It is a fast and efficient method of computing the discrete Fourier Transform of a series of data samples²⁶.

The *Long-term Average Spectrum* is a method of assessing quality by averaging the frequencies to draw formants²⁷. A long sound sample of duration say 20-40 seconds contains a collection of all the components of sounds. The resulting spectrum is not influenced by the specifics of speech like accent, articulation, pattern etc. The first Formant, F1 and second Formant, F2 are affected by changing vowels. F3, F4 and F5 remain uniform over the length of sound. These decide the quality of voice.

Acoustic Measures

Depending on the information required out of a sound signal there are a variety of ways of analysis.

We should remember at this juncture that human voice is a complex acoustic output dynamically varying over time, in frequency content, amplitude, harmonics and noise and also their proportion. In majority of voice analysis the given signal is broken down into a series of sine waves by Fourier Transform. In each of them all the above parameters are captured on a time domain of spectrogram and their values are calculated²⁸.

The most of the analyses address the common parameters :

- 1. Frequency or Pitch
- 2. Amplitude or Volume
- 3. Perturbation
- 4. Harmonics

Frequency

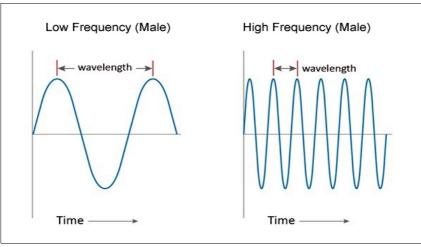
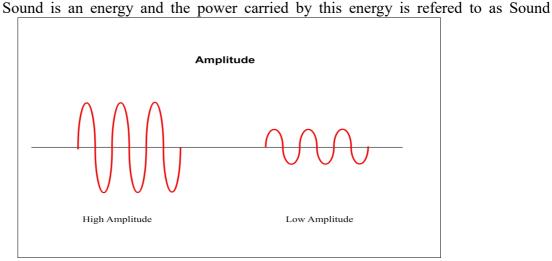


Fig 14 - Frequency

Frequency is the number of cycles per second in a sinusoidal wave form and is refered to as Hertz(Hz). In natural periodic sounds like musical notes and human voice there is no single sinudoidal wave. Rather it is a combination of a varieties of such waves produced at the same time. Of these one frequency, the lowest is of highest intensity and is percieved by the ear as that frequency. This is refered to as Fundamental Frequency(F0)⁸.


In human voice the fundamental frequency is usually 85 to 180 Hz in men and 165 to 255 Hz in women²⁹.

The fundamental frequency is extracted at different contexts depending on the need of the investigator.

Speaking fundamental frequency is an average of the fundamentals delivered over a period of speech or while reading a passage.³⁰. This is usually perceived as the pitch of that person's voice. However there is always some amount of Frequency Variability. With low variability the voice appears monotonous. In diseases like Parkinsonism variability as well as intensity are reduced. At the same time good speakers use Fundamental Freqency variations to their advantage by controlled modulation of their voice.

Phonational Frequency Range is the total range, from lowest to the highest frequency that the human voice can cover³¹. Though majority of non-singers can cover just an octave, trained singer's voices can travel over 2 to 3 octaves. Anything beyond is rare and in majority of the times causes a lot of strain.

Intensity (Amplitude)

Fig 15 - Intensity(Amplitude)

Intensity or Acoustic Intensity. It is measured as energy per unit area along the direction of wave propagation³². As in all wave motions the sound intensity diminishes inversely proportional to the square of the distance from the source of sound³³.

Sound Intensity is measured as dB or Decibel. Human ear is so sensitive that it can appreciate sound energy levels from 10 to 1,00,00,00 of sound pressure level. Since this value is practically unwieldy for routine use, a logarithmic scale, dB is developed. Thus a sound 100 times powerful is 20 dB and 1000 times is 30 dB. On the decibel scale, the range of human hearing extends from 0 dB, wherein it is almost inaudible, to about 130 dB that can cause pain. The Absolute threshold of hearing in humans is defined as the minimum intensity of sound that can just be heard by normal young adults for 1000 Hz in a controlled environment and is refered to as 0 dB. It is generally reported as the RMS sound pressure of 20 micropascals. The sensitivity of the ear is different for different frequencies maximum being for 2 kHz to 4 kHz.

Phonetogram

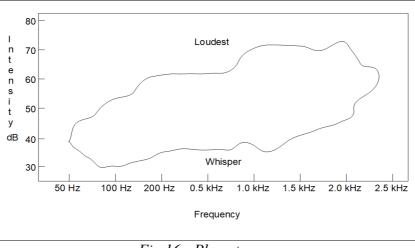


Fig 16 - Phonetogram

It displays the dynamic range of the human voice in terms of both fundamental frequency (pitch) and intensity (loudness). This display can be useful in identifying the limits of vocal function. In dysphonias the shape of the phonetogram changes³⁴.

Spectrogram

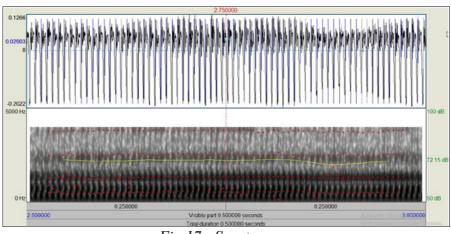


Fig 17 - Spectrogram

A spectrogram is a graphic presentation of a sound signal as it varies with time. The time is scaled on x-axis where as y-axis represents frequency. The intensity at any given time for a particular frequency is represented by changes in colour or the density of gray scale³⁵. The spectrogram is generated by any of the following methods :

- 1. Fourier transform,
- 2. optical spectrometer or a
- 3. bank of band-pass filters.

We have used the spectrogram to resample the signal, extract formants and other voice parameters. **Variation Measures**

Jitter

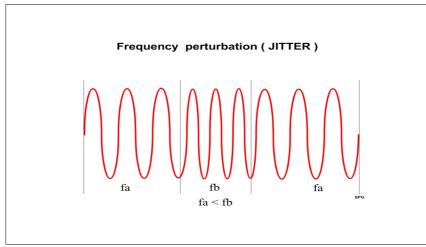


Fig 18 - Jitter (Frequency Perturbation)

Perturbations are variations in acoustic signal. Since human voice is quasiperiodic and never perfect, perturbations in a long, normal voice are inherent². Hence perturbations from cycle to cycle are more significant. Perturbations can be in frequency (jitter) or in amplitude(shimmer). Normally these are very minimal (jitter <0.5%, Shimmer < 0.7dB) and not recognised during routine interactions².

Shimmer

Shimmer is the perturbation in the intensity or amplitude of a sound signal.

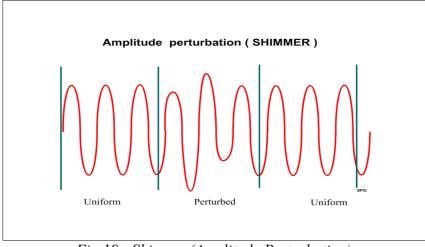


Fig 19 - Shimmer(Amplitude Perturbation)

Harmonic to Noise Ratio

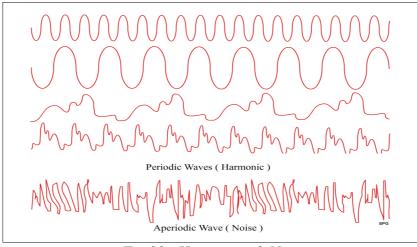


Fig 20 - Harmonics & Noise

During voice production the vocal folds vibrate almost, but not perfectly periodically³⁶. Thus normal voice is a mixture of periodic signals and aperiodic ones. Aperiodic energy is refered as noise. Since lesser the noise better the voice a ratio of periodic to aperiodic energy is a good indicator of healthiness of voice and vice versa. Noise is produced by either turbulent airflow that impairs glottic closure or aperiodic vibration of the vocal folds⁸.

Drawbacks of perturbation measures :

Perturbation analysis can be performed only for nearly periodic signals because accurate measurement of fundamental frequency is a must for such analysis. Severely dysphonic voices are

often aperiodic hence may not yield reliable results³⁷.

Other Acoustic Measures

Aerodynamic measurements

The air flow through the glottis and subsequently through the whole vocal tract has a significant influence on the resultant voice. Hence aerodynamic measures are partinent³⁸. They provide indirect evidence of functional bearing on the valvular effect of the larynx.

The common measures are

- 1. Lung volumes and capacities
- 2. Airflow
- 3. Air pressure

Reduced *Lung Volume* can not build up adequate subglottic air pressure and thus can not push the vocal folds apart. Diseases that reduce lung volume like COPD affect the quality of voice. Lung volume can be measured by a Spirometer.

Air flow is the volume of air displaced during phonation. It is standardised for a sustained vowel and is measured in cubic centimeters. Normally it is about 100cc/sec. Anything more results in breathy voice. A *Pneumatotachograph* is used for the purpose³⁹.

The maximum phonation time (MPT)

It is measured by asking the subject to inhale as deeply as possible and then sustain a steady [a] vowel for the longest possible time. It indicates glottal competence. Time less than 10.5sec is regarded as abnormal^{1,2}.

s/z Ratio is an indirect index of glottic airflow. Time to hold as long as possible on pronouncing 's' and 'z' is recorded. Normal individuals can hold for nearly the same time for both 's' and 'z'. In pathological voices the /z/value will be decreased but not on the /s/ time. In vocal fold palsy and other lesions Increased ratio is found⁴⁰.

Air Pressure

The cords start to vibrate when tissue resistance of the vocalfolds is less than the subglottic pressure. A minimum of 5-10 cm of water of subglottic pressure is needed to induce oscillation. This can be decreased in vocal fold palsy, neuro-muscular conditions and lung parenchymal diseases⁴¹. In hyperfunctional and spasmodic dysphonias the subglottic pressure is high. Measuring subglottic pressure is done by utilising a pressure transducer kept in vocal tract by a puncture in cricothyroid membrane or trachea, or negotiating to the subglottis through nose into the oesophagus⁴².

Quality-of-life measures

It is quite challenging to assess the impact of voice disorder on the quality of life. The

assessment has to cover general assessment and assessments related to communication handicap⁴³. For such assessments questionnaires for the patient are developed. Some of the questionnaire are :

- 1. Patient questionnaire -vocal performance^{44,45}
- 2. Voice-related quality of life
- 3. Voice handicap index⁴⁴
- 4. Voice symptom scale
- 5. Voice activity and participation

The results can be inaccurate since the person fails to understand the impact of voice disorder on quality of life.

References

- Patel RR, Harris SM, Halum SL. Objective voice Assessment. In: Benninger M. (Ed). Sataloff's Comprehensive textbook of Otolqaryngology Head and Neck surgery. 1st Ed. New Delhi: The Health Sciences Publisher, 2016; p. 155-66.
- Boone DR, McFarlane SC, Berg SLV, Zraik RI. The voice and Voice Therapy. 8th edition, Boston: Allyn and Bacon; 2010.
- American Speech-Language-Hearing Association(2004 D).Preferred practice pattern for the profession of Speech Language Pathology. [Rockville MD : Author]. [cited on May 6 2018]. Available from www.asha.org/policy
- 4. Hirano M. Psycho-acoustic evaluation of voice. GRBAS Scale for evaluating the hoarse voice. In: Clinical examination of voice. Vienna: Springer;1981.
- Nemr K, Simões-Zenari M, Cordeiro GF, Tsuji D, Ogawa AI, Ubrig MT, Menezes MH. GRBAS and Cape-V scales: high reliability and consensus when applied at different times. Journal of voice. 2012 Nov 1;26(6):812-17.
- Zraick RI, Kempster GB, Connor NP, Thibeault S, Klaben BK, Bursac Z, Thrush CR, Glaze LE. Establishing validity of the consensus auditory-perceptual evaluation of voice (CAPE-V). American Journal of Speech-Language Pathology. 2011.
- Mathieson L, Carding P. The Voice and speech production. In: Michael Gleeson.(Ed). Scott-Brown's Otorhinolaryngology, Head and Neck Surgery. 7th ed. London: Hodder Arnold, 2008; p. 2166-72.
- Mcglaushan J, Fourcin A. Objective evaluation of the voice. In: Michael Gleeson. (Ed). Scott-Brown's Otorhinolaryngology and Head and Neck Surgery. 7th ed. London: Hodder Arnold, 2008; p. 2172-78.
- Nigel Beasly. Anatomy of larynx and tracheobronchial tree. In: Michael Gleeson.(Ed). Scott-Brown's Otorhinolaryngology and Head and Neck Surgery 7th ed. London: Hodder Arnold, 2008; p. 2130-45.
- Jeannon JP, Macnamara M. Assessment and examination of the upper respiratory tract. In:Michael Gleeson. (Ed). Scott-Brown' s Otorhinolaryngology and Head and Neck Surgery. 7Ed. London: Hodder Arnold, 2008; p2145-56.
- Gerhard. F, Georg PH, Gross anatomy of Larynx. In: Benninger.MS.(Ed). Sataloff's Comprehensive textbook of Otolqaryngology Head and Neck surgery. 1st edition. New Delhi, The Health Sciences, 2016; p.23-33.
- 12. Warnecke A, Averbeck T, Leinung M, Soudah B, Wenzel GI, Kreipe HH, Lenarz T, Stöver T. Contact endoscopy for the evaluation of the pharyngeal and laryngeal mucosa. The

DEVELOPMENT OF A TOOL TO OBJECTIVELY IDENTIFY NORMAL VOICE

Laryngoscope. 2010 Feb;120(2):253-8.

- 13. Hanson DG, Gerratt BR, Ward PH. Glottographic measurement of vocal dysfunction: a preliminary report. Annals of Otology, Rhinology & Laryngology. 1983 Sep;92(5):413-20.
- Hirano M, Bless DM. Videostroboscopic examination of the larynx. 1st edn. London: Whurr Publishers Ltd; 1993.
- 15. Boehme G, Gross IVI. Stroboscopy and other techniques for the analysis of vocal fold vibration. 1st edn. London: Whurr Publishers; 2005.
- 16. Woo P. Stroboscopy and High speed video examination of Larynx.. In: Benninger.MS.(Ed). Sataloff's Comprehensive textbook of Otolqaryngology Head and Neck surgery. 1st edition.New Delhi:The Health Sciences, 2016; p.23-33.
- Nasr WF, Amer HS, Askar SM, Enaba MM. Laryngeal ultrasound as effective as CT scans for the diagnosis of various laryngeal lesions. The Egyptian Journal of Otolaryngology. 2013 Apr 1;29(2):93.
- Dimitar D, Deliysk E, Hillman. State of the Art Laryngeal Imaging: Research and Clinical Implications. Curr Opin Otolaryngol H & N Surg. 2010 Jun;18(3):147-52.
- Multi-Dimensional Voice Program 3.3. Software Informer. Retreived from May 8 2018. Available from https://multi-dimensional-voice-program.software.informer.com/
- 20. Tiger DRS Inc. Retreived from May 8 2018. Available from http://www.drspeech.com/
- 21. Voice and speech Systems. Retreived from May 2018. Available from https://www.vagmionline.com/
- Romak JJ, Heur RJ, Hawkshaw MJ, Sataloff RT. The Clinical Voice Laboratory. In: Sataloff RT (Ed). Professional Voice - The Science and Art of Clinical Care. 4 th edition. San Diego, CA: Plural Publishing, 2017; p. 405-439.
- Dixit VM, Sharma Y. Voice Parameter Analysis for the disease detection. Journal of Electronics and Communication Engineering. 2014 Jan;9(3):48-55.
- 24. Boersma P., Weenink D., "PRAAT: Doing phonetics by computer", Version 4.3.14, Computer program, 2005.
- 25. Linear predictive coding Wikipedia. (n.d.). Retrieved December 15, 2018, from https://en.wikipedia.org/wiki/Linear predictive coding#Overview
- 26. Fast Fourier transform Wikipedia. (n.d.). Retrieved December 16, 2018, from https://en.wikipedia.org/wiki/Fast_Fourier_transform
- 27. Baken RJ, Orlikoff RF. Clinical measurements of speech and voice, 2nd edn. San Diego: Singular Thomson Learning; 2000. Hammarberg B. Clinical applications of methods for acoustic voice analysis. Int J Rehab Res. 1980; 3: 548-9.

- 28. Spectrogram Wikipedia. (n.d.). Retrieved December 16, 2018, from https://en.wikipedia.org/wiki/Spectrogram
- 29. Titze IR. Principles of Voice Production. Iowa city, IA: National centre for voice and research;2000.
- Hollien H, Shipp T. Speaking fundamental frequency and its disorders. London: Whurr Publishers; 2001.
- Sulter AM, Wit HP, Schutte HK, Miller DG. A structured approach to voice range profile (phonetogram) analysis. Journal of Speech, Language, and Hearing Research. 1994 Oct;37(5):1076-85.
- 32. Inverse Square Law, Sound -wikipedia. (n.d). Retreived September 3 2017 from http://hyperphysics.phy-astr.gsu.edu/hbase/Acoustic/invsqs.html
- 33. Absolute threshold of hearing Wikipedia. (n.d.). Retrieved December 1, 2018, from https://en.wikipedia.org/wiki/Absolute_threshold_of_hearing
- 34. Phonetogram Glottopedia. (n.d.). Retrieved September 16, 2017, from http://www.glottopedia.org/index.php/Phonetogram
- 35. Spectrogram Wikipedia. (n.d.). Retrieved December 16, 2019, from https://en.wikipedia.org/wiki/Spectrogram
- 36. Klingholz F. The measurement of the signal-to-noise ratio (SNR) in continuous speech. Speech Communication. 1987 Mar 1;6(1):15-26.
- 37. Brockmann-Bauser M, Drinnan MJ. Routine acoustic voice analysis: time to think again? validity and reliability of acoustic voice. Curr Opin Otolaryngol Head Neck Surg. 2011 Jun;19(3):165-70
- 38. Hillman RE, Kobler JB. Aerodynamic measures of voice production. In: Kent RD, Ball rvlJ (eds). Voice quality measurement. San Diego: Singular Publishing Group, 2000; P. 245-55.
- Baken RJ, Orlikoff RF. Airflow and volume. In: Baken RJ, Orlikoff RF (eds). Clinical measurements of speech and voice. San Diego: Singular Thomson Learning, 2000; p. 337-91.
- 40. Eckel FC, Boone DR. The s/z ratio as an indicator of laryngeal pathology. Journal of Speech and Hearing Disorders. 1981 May;46(2):147-9.
- 41. Kitajima K, Fujita F. Estimation of subglottal pressure with intraoral pressure. Acta otolaryngologica. 1990 Jan 1;109(5-6):473-8.
- 42. Titze IR. On the relation between subglottal pressure and fundamental frequency in phonation. The Journal of the Acoustical Society of America. 1989 Feb;85(2):901-6.
- 43. Hogikyan NO, Sethuraman G. Validation of instrument to measure voice-related quality of

life (V-ROOL). J Voice. 1999; 13: 557-69.

- 44. Jacobson BH, Johnson A, Grywalski C, Silbergleit A, Benninger MS. The Voice Handicap Index (VHI): Development and validation. Am J of Speech Lang Path. 1997; 6: 66-70.
- 45. Deary IJ, Wilson JA, Carding PN, MacKenzie K. VoiSS: a patient-derived voice symptom scale. Journal of psychosomatic research. 2003 May 1;54(5):483-9.

MATERIALS & METHODS

urce of Data	Young adults between 18 and 28 years of age, both males and females
	were selected from near by colleges. Informed consent was taken
elusion Criteria	 Detailed history specifically about systemic diseases, upper respiratoty tract infection, tobacco and alcohol consumption and voice abuse was taken. They underwent detailed clinical examination. Those who were screened by the above said procedure were selected
clusion Criteria	
ciusion cinteria	
mple Size	In this at 5% level of significance and 3% margin of error the
-	calculation was done based on the following formula :
	$n = z^2 p(1-p) / (d^2)$
	where
	Z=z statistic at 5% level of significance
	d is margin of error
	p is anticipated prevalence rate (50%)
pe of sampling/	
hnique	Judgement sampling
clusion Criteria mple Size pe of sampling/	tract infection, tobacco and alcohol consumption and voice abuse wataken. They underwent detailed clinical examination. Those who were screened by the above said procedure were selected for study. Voice abuse Hearing loss Upper or lower respiratory tract infection Any chronic systemic illness like tuberculosis, diabetes, hyper or hypothyroidism, Neurological disease etc. In this at 5% level of significance and 3% margin of error the calculation was done based on the following formula : $n = z^2p(1-p)/(d^2)$ where Z= z statistic at 5% level of significance d is margin of error p is anticipated prevalence rate (50%)

Data Collection Procedure

Sample Collection Setup

Fig 21 - Voice Recording Set Up

- 1. The voice samples were recorded in a sound treated room.
- 2. A regular Windows Desktop Computer was used.
- 3. A microphone, unidirectional microphone (Sony Audio-Technica 250XL) was used

Recording of Voice Samples

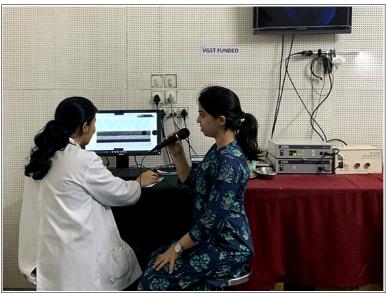


Fig 22 - Recording of Voice

The Microphone was held at a distance of 5cm in front of the lips and 3 cm above the breath stream. Each person was first trained to produce sustained vowel /a/ by the examiner herself through utterance of the voice at comfortable loudness and pitch. The sustained vowel, /a/ was recorded for minimum of 3 seconds using PRAAT¹ software.

A total of 1500 vowel samples were recorded. Only 1000 quality samples in terms of uniformity of volume and pitch were available because of technical reasons.

The 3 sec sustained vowels were then extracted in the spectrogram of PRAAT to get the most stable and uniform middle 1 sec segment.

Extraction of Parameters

The extracted audio clip was submitted to PRAAT¹ to get parameters

IMG_20191	con SPG ALCOL. Noize Extendable MC 2019 Avera Free CCenter Activity Advisor H. Activity		
IMG_20191 VF	4. Sound untitled	•	× Help
bjhs_42_19 H	0.1791 0.07558		
Course.doc trial_Kanna H			
trial_Kanna Be TI_Address A	0.2702 5000 Hz	100 dB	
Adu_Birthd U Adu_Birthd		72.54 dB	
aoiskcon latha - C 1	0 Hz 1.500000 1.500000 1.500000 1.500000 4.00000000	50 dB	
soiskcon SP latha	Total duration 3.000000 seconds	Window Grou	
Ť	🛱 🤤 💼 🧔 👰 🎽 🐔 👷 👘 👘	13:21 20-12-201	, 🖓

Fig 23 - Three Seconds Clip

DEVELOPMENT OF A TOOL TO OBJECTIVELY IDENTIFY NORMAL VOICE

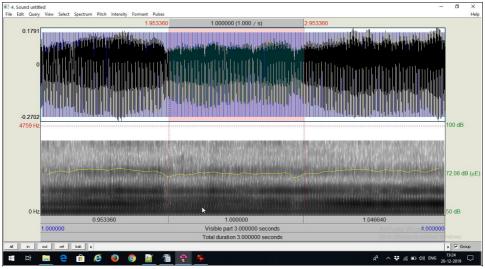
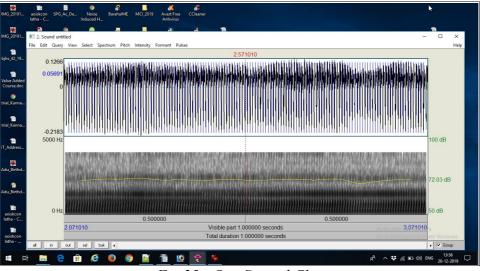
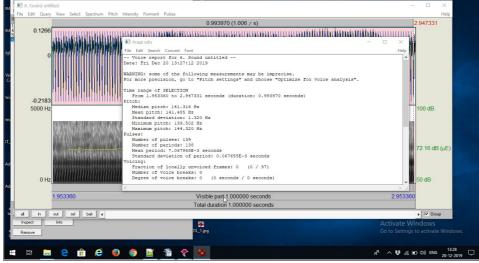




Fig 24 - Selection of one Second Clip

Fig 25 - One Second Clip

Fig 26 - Voice Report

To speed up and automate extraction of parameters, a *PRAAT Script* was written and utilised. The Script extracted, in a single go, parameters of batches of 20 voice clips in each from a folder in 1-2 minutes and pushed them to an excel sheet.

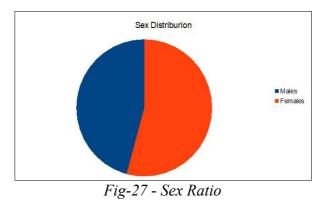
PRAAT Script

```
1 #E:\Dr Lathadevi\aaa sounds\GROUP A
2 #### GET DIRECTORY OF SOUND FILES
3 form GET VOICE REPORT
4 word DirectoryPath
5 endform
6
7 directory \$ = directory Path \$
8
9 ### WRITE CAPTIONS
10 writeInfoLine: "File Median pitch Mean pitch Standard deviation Minimum
pitch Maximum pitch Number of pulses Number of periods Mean period
Standard deviation of period Fraction of locally unvoiced frames Number of voice
breaks Degree of voice breaks Jitter (local) Jitter (local, absolute) Jitter
(rap) Jitter (ppq5) Jitter (ddp) Shimmer (local) Shimmer (local, dB)
Shimmer (apq3) Shimmer (apq5) Shimmer (apq11) Shimmer (dda) Mean
autocorrelation Mean noise-to-harmonics ratio Mean harmonics-to-noise ratio"
11
12### CREATE A STRING OUT OF FILES LIST
13 strings = Create Strings as file list: "list", directory \frac{1}{2} + \frac{1}{2}.*"
14 numberOfFiles = Get number of strings
15
16### OPEN EACH FILE SEQUENTIALLY
17 for ifile to numberOfFiles
18 selectObject: strings
19 fileName$ = Get string: ifile
20 Read from file: directory\frac{1}{2} + "/" + fileName\frac{1}{2}; Open files in praat
21### OPEN SOUND EDITOR
22 View & Edit
23
24 files$=""
25 files$= "Sound " + replace$(fileName$,".wav","",4)
26
27### ACCESS EDITOR OBJECT
28 editor: "'files$'"
29 Select: 0, 1.0
30
31### CREATE VOICE REPORT OBJECT
32 voiceReport$ = Voice report
33
34### GET PROPEETIES OF VOICE REPORT OBJECT
35
36 med_pitch = extractNumber (voiceReport$, "Median pitch: ")
37 mean pitch = extractNumber (voiceReport$, "Mean pitch: ")
38 std deviation = extractNumber (voiceReport$, "Standard deviation: ")
39 min pitch = extractNumber (voiceReport<sup>$</sup>, "Minimum pitch:")
40 max_pitch = extractNumber (voiceReport$, "Maximum pitch:")
41
42 number_of_pulses = extractNumber (voiceReport$, "Number of pulses: ")
43 number_of_periods = extractNumber (voiceReport$, "Number of periods:
")
44 mean_period = extractNumber (voiceReport$, "Mean period: ")
45 standard_deviation_of_period = extractNumber (voiceReport$, "Standard deviation
of period: ")
46
47 fraction_of_locally_unvoiced_frames = extractNumber (voiceReport$, "Fraction of
```

DEVELOPMENT OF A TOOL TO OBJECTIVELY IDENTIFY NORMAL VOICE

```
locally unvoiced frames: ")
48 number_of_voice_breaks = extractNumber (voiceReport$, "Number of
voice breaks: ")
49 degree of voice breaks = extractNumber (voiceReport<sup>$</sup>, "Degree of
voice breaks: ")
50
51 j 1 = extractNumber (voiceReport<sup>$</sup>, "Jitter (local): ")
52 j 2 = extractNumber (voiceReport<sup>$</sup>, "Jitter (local, absolute): ")
53 j_3 = extractNumber (voiceReport<sup>$</sup>, "Jitter (rap): ")
54 j_4 = extractNumber (voiceReport$, "Jitter (ppq5): ")
55 j 5 = extractNumber (voiceReport<sup>$</sup>, "Jitter (ddp): ")
56
57 s 1 = extractNumber (voiceReport<sup>$</sup>, "Shimmer (local): ")
58 s_2 = extractNumber (voiceReport<sup>$</sup>, "Shimmer (local, dB): ")
59 s_3 = extractNumber (voiceReport<sup>$</sup>, "Shimmer (apq3): ")
60 s_4 = extractNumber (voiceReport<sup>$</sup>, "Shimmer (apq5): ")
61 s_5 = extractNumber (voiceReport$, "Shimmer (apq11): ")
62 s_6 = extractNumber (voiceReport<sup>$</sup>, "Shimmer (dda): ")
63
64 mean_autocorrelation = extractNumber (voiceReport$, "Mean
autocorrelation: ")
65 mean noise to harmonics ratio = extractNumber (voiceReport$, "Mean
noise-to-harmonics ratio: ")
66 mean_harmonics_to_noise_ratio = extractNumber (voiceReport$, "Mean
harmonics-to-noise ratio: ")
67
68
69
70### Formants Show Formants -> toggles
71 #Show formants
72 f0= Get first formant
73 f1= Get second formant
74 f2= Get third formant
75 f3= Get fourth formant
76
77### PRINT FOR EACH FILE
78 appendInfoLine: fileName$,tab$,
79 ... med pitch,tab$,mean pitch,tab$,std deviation,tab$,min pitch,tab$,max pitch,tab$,
80 ...
number_of_pulses,tab$,number_of_periods,tab$,mean_period,tab$,standard_deviation_of_p
eriod,tab$,
81 ...
fraction_of_locally_unvoiced_frames,tab$,number_of_voice_breaks,tab$,degree_of_voice_
breaks,tab$
82 ... j_1,tab$,j_2,tab$,j_3,tab$,j_4,tab$,j_5,tab$,
83 ... s_1,tab$,s_2,tab$,s_3,tab$,s_4,tab$,s_5,tab$,s_6,tab$,
84 ...
mean autocorrelation,tab$,mean noise to harmonics ratio,tab$,mean harmonics to noise
86### CLOSE THE EDIT OBJECT Show Formants
-> toggles
87
88
89
90 Close
92### ACCESS NEXT FILE
93 endfor
```

Statistical Analysis Methods


The extracted parameters were descriptively summarised using SPSS 20 Software². Mean +/- Standard Deviation, Standard Deviation were used for continuous variable.. The number of percentage were used in the data summaries for categorical data. Wherever necessary graphs and diagrams were represented. Normality test was used for determination of distribution and range.

References:

- 1. Boersma P., Weenink D., "PRAAT: Doing phonetics by computer", Version 4.3.14, Computer program, 2005. IBM Support. IBM, Retreived on Jan, 3rd 2018, Available from <u>https://www.ibm.com/support/pages/spss-statistics-20-available-download</u>
- 2. IBM Support. IBM, Retrieved on Jan, 3rd, 2018, available from https://www.ibm.com/support/pages/spss-statistics-20-available-download

OBSERVATION AND RESULTS

Out of 1000 voices, the number of male voice sample size was 458 (45.8%) and female voices were 542 (54.2%). This is depicted in the Pie chart below.

The four parameters i.e. Pitch, Jitter, Shimmer and Harmonic to Noise Ratio of all the 458 males were statistically computed and the comprehensive values were derived. These are given in Table-1.

Table-1: Parameters Among Males				
Parameters	Mean Pitch	Jitter (DDP)	Shimmer (DDA)	Mean Harmonics-To- Noise Ratio
Mean	137.0561	0.01149	0.083749	20.4810
SD	30.3518	0.01266	0.068467	4.84
Mean +SD	167.464421	0.2415	0.152216	25.32931
Mean-SD	106.708086	0.00117	0.015282	15.6339
Maximum value	278.1940	0.1537	0.45302	33.1290
Minimum value	76.432	0.00247	0.01181	0.711
Median (middle)	130.3605	0.0081	0.0600	21.3050
Range	106.7 to 167.4	0.00117 to 0.2415	0.01528 to 0.15282	15.634 to 25.32931
25TH Percentile	119.8148	0.0060	0.0422	17.7950
75TH Percentile	144.1345	0.0122	0.0942	23.6203

Similarly the values were derived for 542 females and are given in Table-2

Table-2: Parameters Among Females				
Parameters	Mean Pitch	Jitter (DDP)	Shimmer (DDA)	Harmonics-To-Noise Ratio
Mean	234.2682495	0.01089	0.078905	21.73274
Sd	31.29034	0.00987	0.06143	5.013088
Mean+ Sd	265.5585	0.02076	0.140335	26.74582
Mean-Sd	202.97790	0.00103	0.017474	16.71965
Maximum Value	465.445	0.124	0.67366	33.8090
Minimum Value	85.69	0	0.02	2.17
Range	202.9779-265.5585	0.00103-0.02076	0.017474-0.140335	16.71965-26.74582
25th Percentile	220.5995	0.0059	0.0401	19.0450
75th Percentile	250.4635	0.0127	0.0945	25.2038

PITCH

The computed values of Pitch are shown in Table-3

Table – 3 : Pitch Values			
Statistical Parameter	Male	Female	
Mean	137.0862538	234.2682495	
Sd	30.37816721	31.29033971	
mean+sd	167.464421	265.5585892	
mean-sd	106.7080866	202.9779098	
Max Values	278.194	465.445	
Min Values	76.432	85.694	
Range of Pitch values	106.70-167.46	202.97-265.55	

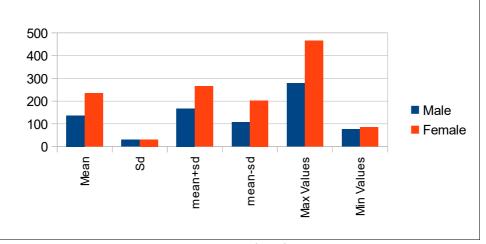


Fig 28 - Pitch Values

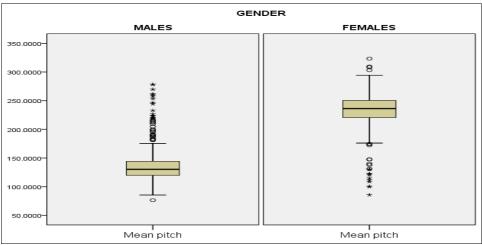
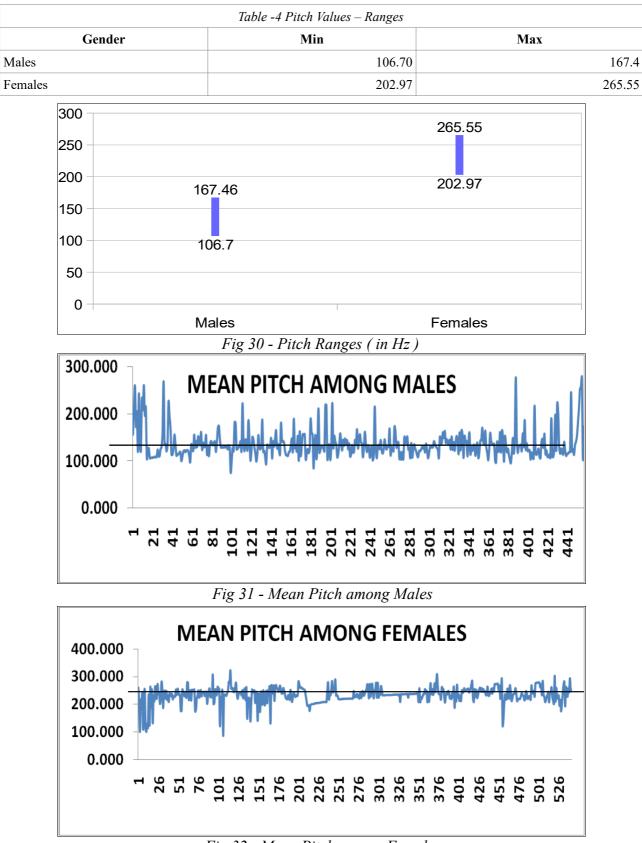



Fig 29 - Box Plot to show Pitch in Males & Females

Table – 4 shows Range of Pitch Values for both Females and Males

Fig 32 - Mean Pitch among Females

The Pitch in females is consistantly higher than in males.

JITTER

The values of jitter (ddp) in males are depicted in table-5 below.

Table – 5 : Jitter Values			
Jitter Parameter	Male	Female	
Mean	0.0114	0.010895	
SD	0.012662	0.009869	
Mean+SD	0.02415	0.020764	
Mean-SD	0.00117	0.00103	
Range of jitter	0.00117-0.02415	0.001026-0.020764	
Max value	0.1537	0.12455	
Minimum value	0.00247	0.00229	

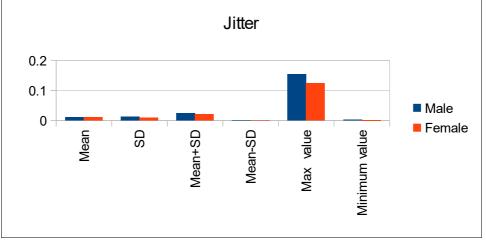


Fig 33 - Jitter Values

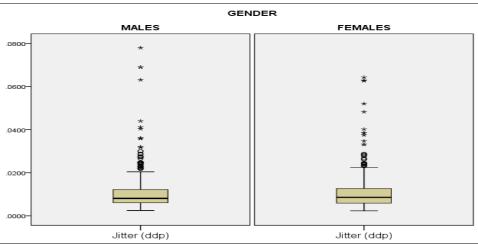
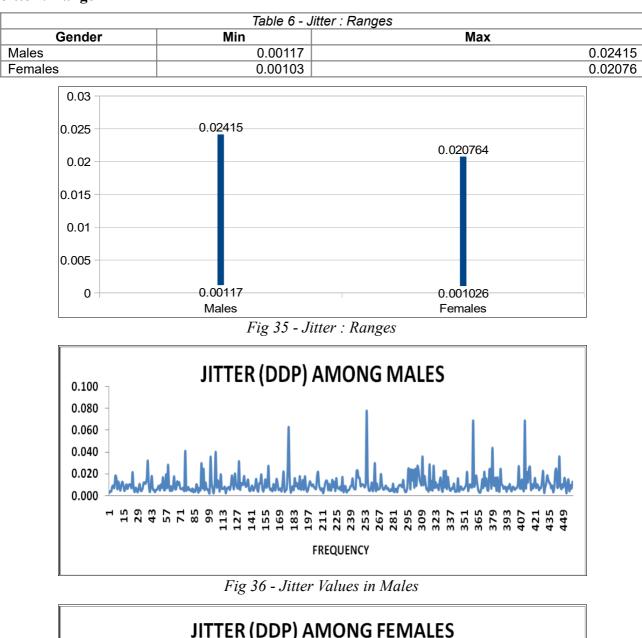



Fig 34 - Box Plot to show Jitter Values

DEVELOPMENT OF A TOOL TO OBJECTIVELY IDENTIFY NORMAL VOICE

Jitter : Range

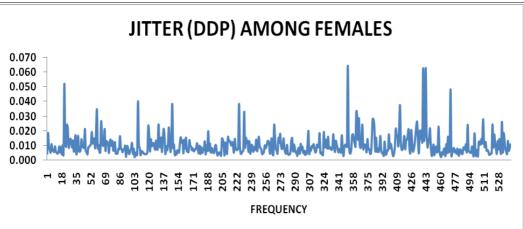


Fig 37 - Jitter Values in Females

Jitter Range is almost the same in both males and females

SHIMMER

Table – 7 : Shimmer Values				
SHIMMER Parameter	Male	Female		
Mean	0.083749	0.078905		
SD	0.068467	0.0023		
Mean+SD	0.152216	0.140335		
Mean-SD	0.015282	0.017474		
Maximum value	0.45302	0.67366		
Minimum value	0.01181	0.01742		
Range of Shimmer	0.015282-0.15282	0.017474-0.140335		

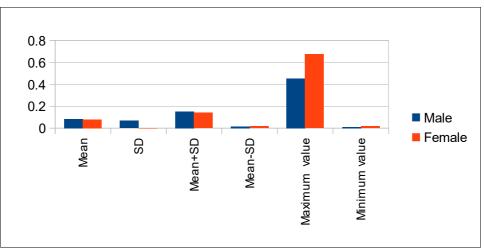
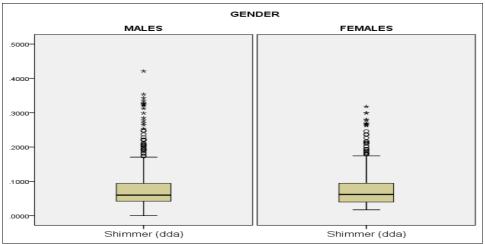
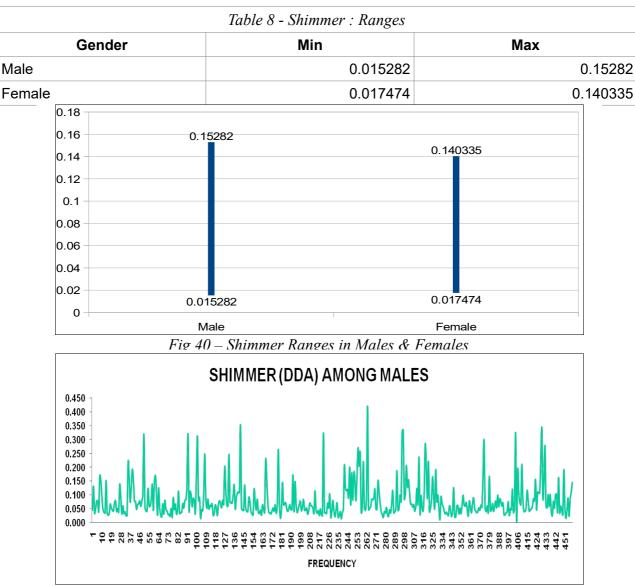
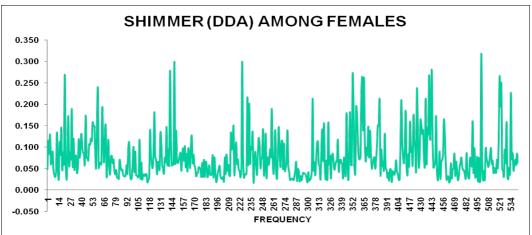
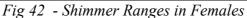


Fig 38 - Shimmer Values


Fig 39 - Box Plot to show Shimmer Values

ShimmerRange

Fig 41 - Shimmer Ranges in Males

There is no much difference in Shimmer between Males and Females

HARMONIC TO NOISE RATIO - HNR

Table 9 – HNR Values			
HNR Parameters	Male HNR	Female HNR	
Mean	20.481	21.7327	
SD	4.824	5.013088	
Mean+SD	25.32931	26.74582	
Mean-SD	15.6339	16.71965	
Minimum	0.711	2.719	
Maximum``	33.129	33.809	
Range of HNR	15.6339 to 25.32931	16.71965-26.74582	

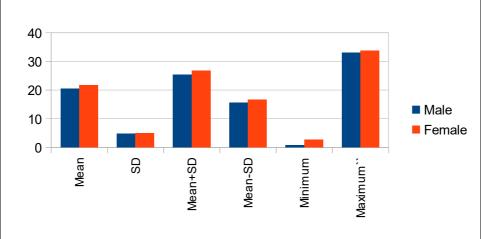


Fig 43 - HNR Values

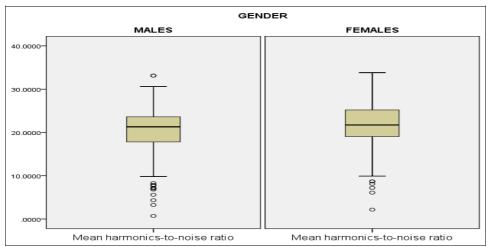
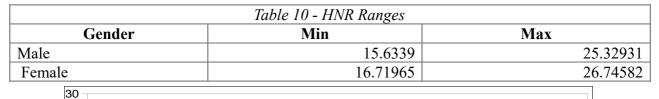



Fig 44 - Box Plot to show HNR Values

Harmonic to noise ratio -Range

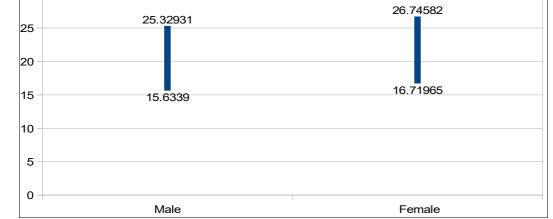


Fig 45 - HNR Range

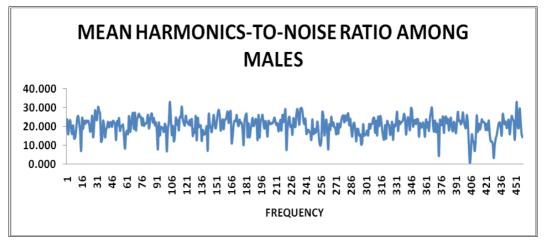


Fig 46 - Mean HNR in Males

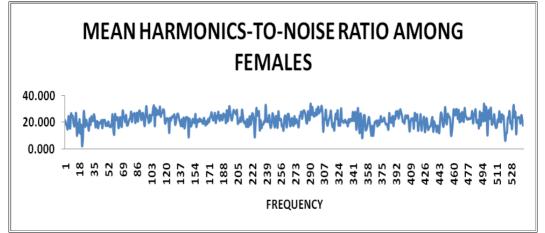


Fig 47 - Mean HNR in Females

Whether male or female the Harmonic to Noise Ratio (HNR) is almost the same.

DISCUSSION

Our objective was to identify and standardise the parameters of normal voice by a simple, easier and non-invasive method so that this becomes a handy tool for day to day use to the clinical practitioner who addresses vocal disorders.

The perceptive methods have been subjective, difficult to quantify, document and not reproducible.¹

Other non-subjective methods wherein instruments are used are invasive, time consuming and need expensive equipment.^{2,3}

With stroboscopy analysis alone it is difficult to diagnose disorders like spasmodic dysphonia.⁴

As a non-invasive, objective, easier method acoustic analysis proves valuable in diagnosis and management of voice disorders.⁵

Acoustic analysis requires a simple computer, a microphone and a voice analysis software.⁶ Worldwide acoustic analysis became a standard practice and many researchers began to analyse normal and abnormal voices and soon came to know that voice is multidimensional.

Pitch Jitter, Shimmer and Harmonics to noise Ratio are the most commonly selected parameters^{6,7,8,9}

It was evident that values of the same parameters were different in different situations. For e.g., in different ages, sexes, durations of the day, emotional factors, regions, types of program, algorithms, hardware used for analysis etc. Hence most of the authors felt that voice evaluation by acoustic analysis require standardisation of the normal voice parameters.¹⁰

When we tried to compare our values with that of other studies, it was found that most of the data were calculated in different ways. For e.g., Jitter can be measured as Jitter%, Jitter ddp, absolute Jitter, local jitter etc. Similarly Shimmer can be measured as dda, Shimmer %, Shimmer Db, absolute Shimmer etc. Hence comparision becomes difficult. There are some studies given below which we tried to compare with our study. For example, Ana Clara Felippe et Al.¹⁰, Kirt Aries¹¹ and Grahaam Williamson¹² considered jitter in terms of % jitter. Deqhan et Al¹⁵ considered Average jitter. Simone¹³ took jitter factor for calculation. The author of this study considered Jitter(ddp).

PITCH

The following Table shows comparision of Pitch Values

Table 11 – Comparision of Pitch Values			
Author	Males	Females	
Grahaam Williamson ¹²	128	225	
Simone ¹³	127.6	215.45	
Bonzi ¹⁷	128	225	
Kirt Aries ¹¹	130.6	218.38	
Chen chi Wang ¹⁴	118.3	203.2	
Deqhan et Al ¹⁵	112	214.64	
Lathadevi HT	137.05	234.26	

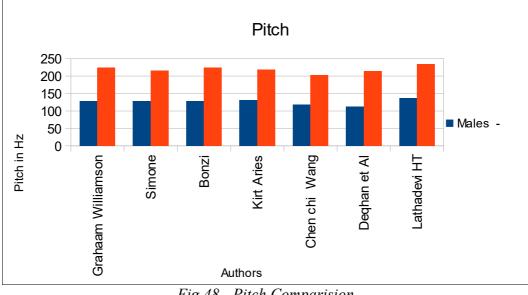


Fig 48 - Pitch Comparision

We could compare Pitch Values with quite many autthors(Grahaam Williamson¹², Simone¹³, Bonzi¹⁷, Kirt Aries¹¹, Chen chi Wang¹⁴, Deqhan et Al¹⁵).

Ana Clara Felippe et Al¹⁰ tried to give standard values for jitter, shimmer, fundamental frequency and HNR studying 20 male and 20 female adults by using vowel 'a'. Their values are :

1.	Jitter	0.49%
2.	Shimmer	0.22dB
3.	Fundamental frequency	119.84 Hz
4.	HNR	9.56

Since their values are different from those in literature they opine that it is important to standardise normative data.

JITTER

The following table and graph depict the values.

Tai	ble 12 – Comparision of Jitter Valu	ues
Author	Males	Females
Bonzi	0.36	0.3
Deqhan et Al	0.23	0.22
Lathadevi HT	0.01149	0.01089

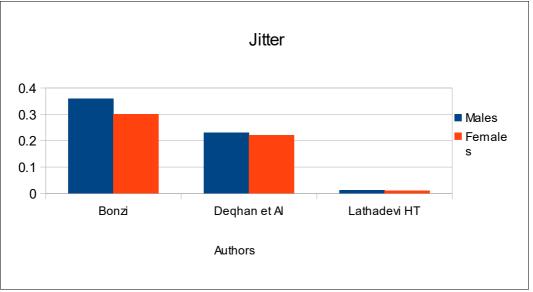


Fig 49 - Jitter Comparision

As such among all, only two authors(Bonzi¹⁷ and Deqhan et Al¹⁵) have considered Jitter values comparable to ours. They show that our jitter values are quite less than them. When compared with other studies the jitter values in our study are less than those of many authors.^{15,17,18} (Jitter – Males : 0.01149, Females : 0.01089). For example in studies by Deqhen et Al Jitter was 0.23 for males and 0.22 for females.

SHIMMER

The following table and graph show the comparision.

Table	e 13 – Comparision of Shimmer Va	alues
Author	Males	Females
Ana Clara	0.227	0.222
Kirt Aries	0.23	0.25
Lathadevi HT	0.08375	0.0789

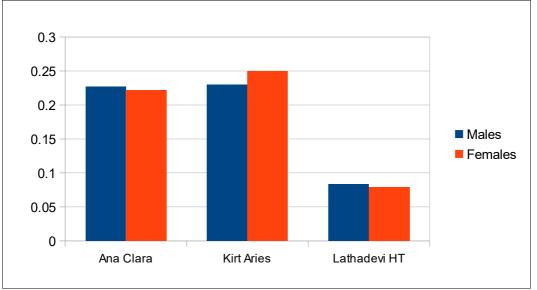


Fig 50 - Shimmer Comparision

Our Shimmer values are comparable but low to those of other two authors(Ana Clara¹⁰, Kirt Aries¹¹).

HNR

The following table shows comparsion of HNR

	Table 14 – Comparision of HNR				
Author	Males	Females			
Ana Clara	9.56	10.9			
Grahaam Williamson	20	-			
Bonzi	20	21.796			
Chen chi Wang	8.2	12.2			
Deqhan et Al	18.42	18.81			
Lathadevi HT	20.481	21.73274			

Fig 51 - HNR Comparision

We could compare HNR with number of authors (Ana Clara Fillippe¹⁰,Grahaam Williamson¹¹, Simone¹³, Bonzi¹⁷, Chen chi Wang¹⁴, Deqhan et Al¹⁵) The HNR is quite similar in our study (20.48dB for males and 21dB for females) to those of Bonzi¹⁷(20dB for males and 21dB for females) and Deqhan et Al¹⁵(18.42dB for males and 18.81dB for females). However, HNR was less than our study in the studies of Chen Chi Wang¹⁴ (8.2dB for males and 12.2dB for females) and Ana Clara Fillippe¹⁰(9.56dB males and 10.9dB females).

Di Niccola et Al¹⁶ have worked to check the possibilities, reliability, and also the limitations of a procedure that was objective and parametric and evaluated the normal and pathological voices. Here, HNR was analysed for determining the relationship between noise and harmonics using 208 subjects of which 60 were normal and 148 were abnormal. The results

concluded that voice analysis is not only simple, but highly sensitive. They concluded in so many words - "For the data obtained to be valid, a necessary condition is the application of a strict, precise, correct sampling and analysis method following well-defined rules. Finally, the values obtained can serve as a basis for the construction of an objective instrumental voice measurement protocol that can be used in forensic evaluation of dysphonia. Standardization of the regulations is essential to such a project."

As per the opinion of Bonzi et Al¹⁷ acoustic analysis is one of the major advances in the study of voice, increasing the accuracy of diagnosis in this area. They felt that normal values as standards are important and necessary to guide voice professionals. Using Praat they analyzed 72 voices of female and male voices among Argentinian Spanish speaking population. Their values were :

1.	Pitch	128 Hz

- 2. Jitter 0.36 + 0.10
- 3. Shimmer 2.7+/- 1.1
- 4. HNR 20+/-2

They felt that the region where the study is done has important influence on the results and this kind of study is useful in comparing normal and abnormal voices of people from different regions. Methodology of sample collection is of paramount importance as the values of voice parameters depend on the prior training of the individual, type and make of microphone used, distance between the mouth and the microphone, type of hardware and software used, sound treated room etc.

Kirt Delovino et Al¹¹ opine that "despite the accuracy and reliability of each machine, authors have agreed to standardize normative data individually due to a number of factors that may cause variations among each system. These possibilities include the type of programming of the acoustic analysis software, the use of recording criteria, type of microphone and other devices used in voice recording."

The effect of recording quality on the analysis of voice and speech was studied by Vogel et Al¹⁸. They opine that acoustical parameters depend on environment, expertise of the clinician and the parameters extracted. According to them the best quality can be obtained using a sound treated room, recording on a hard disc, an dedicated mixer and a good microphone.

Graham Williamson¹² in his article states: "It is difficult to be precise about norms for acoustic measures such as jitter, Shimmer, noise-to-harmonics ratio and fundamental frequency. There are many factors which militate against declaring all-encompassing norms. Some of these are person-specific, gender and age differences), cultural (e.g. what north Americans may consider to be within normal limits may be different from what north Koreans consider to be typical), and

related to the testing environment (e.g. variation in the equipment used, and, importantly the use of different algorithms in the software programs which are used to make the measurements). Measures of jitter and Shimmer using one software program cannot always be compared directly with measures made by another software program."

Fernandez Liesa et Al¹⁹ used Dr. Speech Science software and analysed 154 voices of healthy adults. Their value of Mean F0 was 201 Hz in women and 129 Hz in men. According to age, the F0 increased in men but not so in women as changes in F0 were not statistically significant in women. They opine that age, sex and F0 did not significantly influence jitter, shimmer or HNR.

Wang et Al¹⁴ used computer speech lab Aerophone system manufactured by Kay Elemetrics Corp to establish parameters for normal individuals(both male and female, 45 each). The fundamental frequency was 118 Hz for males and 213 Hz for females. However there was no gender difference in jitter though shimmer and H/N ratio were variable in different genders and age groups.

Dehqan et Al¹⁵ in Iran did a study to identify parameters of acoustic analysis for normal individuals (45 males and 45 females). Their values were - F0 : female 214, male 112; shimmer : female 1.21, male 1.22; jitter : females 0.22, males 0.23. HNR was greater in females.

A comparision between normal and abnormal voices was done by Di Nicola¹⁶ and colleagues using computerised digital sonography. They could identify a significant difference in HNR between normal and abnormal voices.

Haldun Oguz²⁰ compared Praat and MDVP (Multi-Dimensional Voice Program) and found significant differences in Jitter and HNR. Maryn et al²¹ compared jitter and Shimmer measures using both MDVP and Praat programs. The authors noted that MDVP yielded higher values than Praat. They conclude that one can not compare jitter and shimmer outcomes across systems and programs.

Steven Bielamowicz et Al²² have compared perturbation measures from different systems like CSpeech, SoundScope, Hand Marking Voice Analysis system and Computerized Speech Laboratory. The results were different for different systems and made the authors to opine that different systems yield different units.

Toran et Al⁶ analysed voices of vocal polyp patients pre and post operatively. There were changes in parameters that indicated improvement in the voice post-operatively. Authors opined that objective analysis can provide a tool to clinicians for a better understanding of quality of voice.

A review was done by Hartl et Al²³, for providing update on current techniques of dysphonia evaluation in routine clinical practice. They concluded that the objective evaluation of

DEVELOPMENT OF A TOOL TO OBJECTIVELY IDENTIFY NORMAL VOICE

the voice parameters like fundamental frequency and the spectral characteristics of voice has the advantage of being simple to perform, reproducible and quantifiable. But, during evaluation of severe dysphonia, automatic measurements need to be analyzed with caution as the computer algorithms being designed for voices retaining a certain periodicity. They concluded that all of these types of analysis are complementary, informing as to different aspects of vocal quality and laryngeal function. No one measurement alone can diagnose or characterize dysphonia.

Going through the above it is clear that different authors have attempted analysis in a different environment, on different subject groups, using different equipment and software and have given different values for different parameters.

References :

- Kreiman J, Gerratt BR, Kempster GB, Erman A, Berke GS. Perceptual evaluation of voice quality: Review, tutorial, and a framework for future research. Journal of Speech, Language, and Hearing Research. 1993 Feb;36(1):21-40.
- Boone DR, McFarlane SC, Berg SLV, Zraik RI. The voice and Voice Therapy. 8th edition, Boston: Allyn and Bacon; 2010.
- Patel RR, Harris SM, Halum SL. Objective voice Assessment. In: Benninger M. (Ed). Sataloff's Comprehensive textbook of Otolqaryngology Head and Neck surgery. 1st Ed. New Delhi: The Health Sciences Publisher, 2016; p. 155-66.
- Woo P. Stroboscopy and High speed video examination of Larynx.. In: Benninger.MS.(Ed). Sataloff's Comprehensive textbook of Otolqaryngology Head and Neck surgery. 1 st edition. New Delhi, The Health Sciences, 2016; p.23-33.
- 5. Baken R, Olikoff R. Clinical measurement of speech and voice. 2 nd ed, Singular Thomson learning: 2000.
- 6. Toran KC, Lal BK. Objective voice analysis for vocal polyps following microlaryngeal phonosurgery. Kathmandu University Medical Journal. 2010; (8) 30 : 185-189.
- 7. Viktoras S, Ingrida U. Perceptual and acousticassessment of voice pathology and efficacy of endolaryngeal phonomicrosurgery. J of Voice. 2005;(19):138-45.
- 8. Geovani A, Revis J, Triglia JM. Objective, aerodynamic and acoustic measurement of voice improvement after phonomicrosurgery. Laryngoscope. 1999;(109):656-60.
- Ping Yu, Maurice Ouaknine, Joana Revis, and Antoine Giovanni. Objective Voice Analysis for Dysphonic Patients: A Multiparametric Protocol Including Acoustic and Aerodynamic Measurements. Journal of Voice. 2006; (15) 4:529–542.
- 10. de Felippe AC, Grillo MH, Grechi TH. Standardization of acoustic measures for normal voice patterns. Brazilian Journal of Otorhinolaryngology. 2006 Sep 1;72(5):659-64.
- Delovino KA, Casile RU, Hawson F. Vocal Acoustic Measures of Asymptomatic Filipino Young Adults at a Private Tertiary Hospital in Quezon City-A Pilot Study. Philippine Journal of Otolaryngology Head and Neck Surgery. 2012 Dec 1;27(2):7-11.
- 12. Williamson G. Acoustic Measures (Norms). Voice. [internet] 01 February 2014. Viewed on jan 2017 jan 5th. Available from http://www.sltinfo.com/acoustic-measures-norms/
- Simone AA, Jose CP, Marcelo OR. Standardization of acoustic measures of the normal voice. Brazilian J Otolaryngol. 2002; 68:4(14) :540-44.
- Wang CC, Huang HT. Voice acoustic analysis of normal Taiwanese adults. J Chinese Med Ass. 2004 Apr;67(4):179-84.

- 15. Dehqan A, Ansari H, Bakhtiar M. Objective voice analysis of Iranian speakers with normal voices. Journal of Voice. 2010 Mar 1;24(2):161-7.
- Di VN, Fiorella ML, Luperto P, Staffieri A, Fiorella R. Objective evaluation of dysphonia. Possibilities and limitations. Acta Otorhinolaryngologica Italica. 2001 Feb;21(1):10-21.
- 17. Bonzi EV, Grad GB, Maggi AM, Muñóz MR. Study of the characteristic parameters of the normal voices of Argentinian speakers. arXiv preprint arXiv:1508.06226. 2014 ;6 (1):23-25.
- 18. Vogel AP, Morgan AT. Factors affecting the quality of sound recording for speech and voice analysis. International journal of speech-language pathology. 2009 Jan 1;11(6):431-7.
- Fernández RL, Damborenea DT, Rueda PG, Leache JP, del Alamo Campos MA, Llorente EA, Naya MG. Acoustic analysis of the normal voice in nonsmoking adults. Acta otorrinolaringologica espanola. 1999 Mar;50(2):134-41.
- 20. Oğuz H, Kiliç MA, ŞAFAK MA. Comparison of results in two acoustic analysis programs: Praat and MDVP. Turkish Journal of Medical Sciences. 2011 Sep 7;41(5):835-41.
- 21. Maryn, P, Corthals J, Vanderbeke, E. Vanwynsberge M, De Bodt, P, Cauwenberge V. Intersystem and interprogram difference in acoustic perturbation measurement: a comparison between MDVP and Praat. In: Paper presented in the7th Pan European Voice Conference (PEVOC7), Groningen, The Netherlands, 29thAugust–1st September, 2007.
- 22. Bielamowicz S, Kreiman J, Gerratt BR, Dauer MS, Berke GS. Comparison of voice analysis systems for perturbation measurement. Journal of Speech, Language, and Hearing Research. 1996 Feb;39(1):126-34.
- 23. Hartl DM, Hans S, Crevier LB, Laccourreye O, Vaissiere J, Brasnu D. Dysphonia: current methods of evaluation. InAnnales d'oto-laryngologie et de chirurgie cervico faciale: bulletin de la Societe d'oto-laryngologie des hopitaux de Paris 2005 Sep; 122 (4):163-172.

SUMMARY

Voice can be objectively analysed using Acoustic Parameters like mean Pitch, Jitter, Shimmer and Harmonic Noise Ratio. Most of the studies show that normal voice parameters depend on gender, region, methodology of the voice collection, software and the hardware used, different algorithms used for calculations and the set up etc. Hence every institution should standardise the method of acoustic analysis for its own consumption. For the purpose we have created a huge database of voices of normal young adults.

In our study we have tried to identify normative acoustic parameters for normal young adults. The normative values in our study are :

	Male	Female
:	137.0561	234.27
:	0.011	0.010
:	0.08	0.08
:	20.48	21.73
	: : :	: 137.0561 : 0.011 : 0.08

CONCLUSION

Voices can be objectively analysed using acoustic parameters like mean pitch, jitter, shimmer and harmonic to noise ratio. A large database yields more reliable normative parameters. Institutions should develop their own standard protocol for selection of subjects, recording of voices and their analysis.

LIMITATIONS

- 1. In our study, Voices of children and elderly were not included.
- 2. The voice samples belong to a population of a restricted area.
- 3. The voice recording system is specific for our study. It indeed has been different at different establishments. And the results have been varied too. Hence our method can not be universal for use at all the clinics.

FUTURE PROSPECTS

- 1. These normative values can be used as benchmark for comparision with parameters of abnormal voices.
- 2. Using the same methodology we can try to find acoustic parameters of abnormal voices and correlate these parameters with the pathological conditions.
- 3. The acoustic analysis tool can be used as a yardstick for prediction of dysphonic voices and as a pre-diagnostic tool for early lesions presenting with change in voice.

Master_Chart

	Male					
S.No.	File	mean	jitter	shimmer	HNR	
5.NO.	No.	pitch	(ddp)	(dda)	Mean	
1	1	157.078	0.00288	0.04642	23.856	
2	2	218.621	0.00436	0.13164	15.865	
3	3	260.215	0.00433	0.03522	21.443	
4	5	174.133	0.0087	0.05129	23.422	
5	10	204.832	0.00944	0.0786	18.633	
6	11	120.6	0.00752	0.07794	16.039	
7	13	244.112	0.0184	0.04202	20.611	
8	14	132.706	0.01685	0.17023	13.623	
9	15	121.736	0.00627	0.15262	14.111	
10	18	232.879	0.01302	0.09566	18.451	
11	20	209.402	0.00848	0.04976	24.146	
12	22	261.694	0.00511	0.03794	25.668	
13	26	197.439	0.01027	0.03603	22.141	
14	27	215.1	0.01287	0.15228	16.81	
15	28	106.493	0.00941	0.35361	7.147	
16	30	127.28	0.00465	0.02816	24.45	
17	31	127.664	0.00738	0.0335	18.853	
18	33	107.204	0.01052	0.06759	23.066	
19	34	107.509	0.00657	0.05316	21.374	
20	35	107.764	0.00922	0.04687	23.205	
21	36	107.821	0.01053	0.04286	22.264	
22	42	107.021	0.01011	0.07096	23.161	
23	43	109.55	0.00749	0.07948	21.473	
24	44	109.295	0.02172	0.04131	17.305	
25	45	109.413	0.00826	0.05169	18.354	
26	48	124.815	0.0037	0.03883	25.788	
27	49	111.123	0.00738	0.13897	14.412	
28	50	111.326	0.00738	0.13897	20.511	
28	52	126.836	0.00348	0.03216	28.711	
30	53	130.735	0.00723	0.06131	23.826	
		166.235	0.01089			
31	55	269.663		0.03434	23.588	
32	56	136.366	0.00498	0.03934 0.02587		
33 34	57		0.00486		28.317	
	58	137.076	0.00703	0.02712	26.937	
35	60	121.526	0.01207	0.22026	11.967	
36	61	135.547	0.01216	0.16122	13.176	
37	62	226.574	0.01142	0.07489	22.965	
38	63	195.069	0.01587	0.13331	20.386	
39	68	169.826	0.03224	0.19306	14.211	
40	69	114.389	0.01059	0.15656	18.099	
41	70	114.525	0.00368	0.07927	19.821	
42	73	127.056	0.00991	0.07725	22.548	
43	78	156.68	0.01819	0.0489	19.655	
44	79	136.216	0.006	0.066	21.791	
45	83	112.375	0.00579	0.06912	22.339	

		F	emale		
S.No.	File	Mean	Jitter	Shimmer	HNR
5.110.	No.	pitch	(ddp)	(dda)	Mean
1	4	260.312	0.00472	0.04763	21.35
2	6	211.109	0.01865	0.11527	18.711
3	7	99.859	0.00908	0.08382	17.286
4	8	216.162	0.00749	0.1298	14.908
5	9	201.103	0.00548	0.06053	24.334
6	12	239.582	0.01112	0.06795	20.554
7	16	108.656	0.00673	0.09002	15.405
8	17	204.157	0.00714	0.04502	26.468
9	19	252.728	0.00584	0.03522	24.686
10	21	111.41	0.0096	0.03047	24.667
11	23	100.391	0.00634	0.04557	18.794
12	24	129.985	0.00537	0.13476	17.007
13	25	114.876	0.00473	0.05022	22.435
14	29	235.959	0.00551	0.02482	26.409
15	32	122.431	0.00952	0.11156	9.957
16	37	263.25	0.00569	0.0818	19.312
17	38	187.941	0.00912	0.14576	12.438
18	39	253.81	0.00426	0.04685	22.189
19	40	131.186	0.01035	0.08791	11.545
20	41	229.5	0.00408	0.06081	17.791
21	46	211.396	0.07211	0.26901	2.17
22	47	465.445	0.12455	0.67366	0.719
23	51	238.939	0.00934	0.02388	27.765
24	54	220.877	0.02411	0.07989	22.745
25	59	273.414	0.02172	0.17286	16.655
26	64	236.607	0.00886	0.0572	21.621
27	65	243.695	0.01129	0.08858	18.191
28	66	201.636	0.0147	0.07202	18.229
29	67	219.9	0.01339	0.18926	13.77
30	71	282.078	0.00893	0.05435	22.555
31	72	253.919	0.01363	0.12013	18.001
32	74	186.653	0.00613	0.04852	24.284
33	75	242.402	0.00872	0.06949	21.227
34	76	249.621	0.01714	0.08018	21.179
35	80	220.521	0.00444	0.03936	25.865
36	81	248.795	0.00739	0.0541	23.096
37	84	215.958	0.01672	0.11893	16.274
38	85	232.602	0.00683	0.07558	19.544
39	89	208.383	0.00596	0.09458	20.582
40	98	239.726	0.00728	0.13154	15.579
41	99	229.75	0.01448	0.10075	19.574
42	100	237.759	0.00934	0.08649	19.361
43	102	218.365	0.00853	0.05982	21.356
44	103	229.983	0.02142	0.17407	15.586
45	104	227.828	0.00615	0.07506	21.366

Master_Chart

Male					
S.No.	File No.	mean pitch	jitter (ddp)	shimmer (dda)	HNR Mean
46	86	114.525	0.00368	0.07927	19.821
40	87	115.353	0.00526	0.06003	23.017
48	88	118.849	0.00578	0.0783	22.224
49	90	119.855	0.00762	0.10327	21.5
50	91	101.021	0.00924	0.32064	12.833
51	92	109.876	0.00516	0.05791	22.72
52	93	120.747	0.01043	0.04354	20.624
53	94	123.292	0.00783	0.04185	24.532
54	95	119.886	0.01698	0.12373	17.762
55	96	123.29	0.00568	0.06046	20.219
56	129	122.333	0.01969	0.08564	21.039
57	131	111.123	0.00738	0.13897	14.412
58	132	98.714	0.02851	0.45302	8.299
59	133	136.201	0.00972	0.14774	16.36
60	134	133.14	0.00465	0.1707	17.806
61	135	122.776	0.00879	0.10605	16.079
62	136	156.457	0.0049	0.02802	25.598
63	137	129.048	0.00887	0.12561	17.358
64	138	142.723	0.01792	0.05515	20.029
65	139	130.554	0.00637	0.02742	25.143
66	140	153.082	0.00645	0.02186	27.112
67	141	141.577	0.01326	0.06869	18.764
68	142	135.554	0.01023	0.0318	27.399
69	150	162.364	0.01255	0.08133	17.922
70	151	124.744	0.00708	0.04925	23.284
71	152	139.488	0.00653	0.04241	25.245
72	155	130.669	0.00629	0.03128	26.867
73	156	132.005	0.00739	0.03037	25.032
74	157	155.799	0.00481	0.02432	25.18
75	158	114.217	0.04112	0.05159	20.688
76	159	130.98	0.00506	0.01984	24.375
77	160	111.326	0.00612	0.0906	20.511
78	161	135.561	0.00805	0.04792	21.552
79	162	143.091	0.00552	0.06772	21.577
80	167	139.054	0.00579	0.03126	22.91
81	168	134.322	0.00441	0.03120	26.205
82	174	140.184	0.00664	0.11396	19.076
83	175	140.184	0.00004	0.03422	22.403
84	175	142.108	0.00552	0.03422	26.094
85	170	120.404	0.00377	0.03708	26.92
86	180	171.591	0.01054	0.06971	22.146
87	181	175.601	0.00807	0.05369	24.552
88	193	148.513	0.0032	0.08042	20.736
89	195	129.784	0.00727	0.08399	22.268
90	196	129.985	0.00537	0.13476	17.007

INR Iean 1.421 7.454 9.136 17.32 0.401 7.686 6.562 9.128 3.829 0.864 0.864
1.421 7.454 9.136 17.32 0.401 7.686 6.562 9.128 3.829 0.864
7.454 9.136 17.32 0.401 7.686 6.562 9.128 3.829 0.864
9.136 17.32 0.401 7.686 6.562 9.128 3.829 0.864
17.32 0.401 7.686 6.562 9.128 3.829 0.864
0.401 7.686 6.562 9.128 3.829 0.864
7.686 6.562 9.128 3.829 0.864
6.562 9.128 3.829 0.864
9.128 3.829 0.864
3.829 0.864
0.864
- 040
5.846
1.738
3.448
3.504
5.817
7.658
3.795
8.581
16.73
8.504
4.712
3.026
0.317
25.36
7.759
17.72
0.268
2.222
3.449
7.893
20.31
25.69
6.585
9.453
9.455
6.204
6.204
6.204 6.715
6.204 6.715 0.639
6.204 6.715 0.639 7.536
6.204 6.715 0.639 7.536 8.685
6.204 6.715 0.639 7.536 8.685 6.123
6.204 6.715 0.639 7.536 8.685 6.123 1.723
6.204 6.715 0.639 7.536 8.685 6.123 1.723 6.247
(

Master_Chart

Male					
S.No.	File	mean	jitter	shimmer	HNR
	No.	pitch	(ddp)	(dda)	Mean
91	197	129.561	0.02999	0.42094	7.873
92	198	130.091	0.00706	0.04578	22.114
93	199	130.176	0.02482	0.11239	15.252
94	200	130.347	0.00574	0.10142	19.761
95	214	131.3	0.01218	0.05873	19.602
96	217	125.868	0.00648	0.08862	18.894
97	218	134.134	0.00621	0.08104	17.192
98	219	129.077	0.00402	0.03385	21.514
99	220	76.432	0.00247	0.1624	19.674
100	221	100.2	0.03581	0.31255	6.811
101	222	129.428	0.01246	0.081	18.37
102	223	122.096	0.00657	0.09215	22.648
103	227	183.356	0.00261	0.01632	33.129
104	228	180.957	0.01072	0.04759	24.759
105	229	125.844	0.04033	0.04402	15.435
106	230	126.975	0.00834	0.10669	20.37
107	231	130.11	0.01409	0.24831	12.189
108	236	133.533	0.01045	0.08424	14.785
109	248	142.363	0.00442	0.05249	24.722
110	249	122.333	0.01969	0.08564	21.039
111	251	223.107	0.00706	0.05002	23.416
112	252	138.669	0.00666	0.06305	17.974
113	253	121.921	0.00681	0.05859	25.094
114	254	145.887	0.00822	0.06852	24.894
115	255	139.331	0.00257	0.02734	30.614
116	256	124.716	0.00649	0.03441	23.882
117	259	187.046	0.00731	0.06432	21.713
118	260	145.468	0.00798	0.05356	20.614
119	261	143.408	0.007568	0.02648	25.78
119	261	102.288	0.00568	0.02648	
120					22.394
	267	151.508	0.01866	0.07942	22.317
122	269	147.164	0.01193	0.07038	20.998
123	277	130.415	0.00642	0.05479	23.458
124	278	117.185	0.02043	0.08135	20.547
125	279	99.989	0.0112	0.06686	23.983
126	280	114.82	0.00831	0.20379	15.052
127	281	155.489	0.00692	0.11836	18.653
128	282	129.417	0.03172	0.06346	16.877
129	283	125.866	0.00626	0.05968	25.67
130	284	131.104	0.01168	0.24685	12.671
131	285	188.351	0.01031	0.0748	24.502
132	286	120.311	0.01061	0.07347	19.83
133	287	122.165	0.01819	0.07142	20.484
134	288	108.259	0.01078	0.09734	20.612
135	289	94.704	0.00844	0.13755	12.339

	Female				
S.No.	File	Mean	Jitter	Shimmer	HNR
5.110.	No.	pitch	(ddp)	(dda)	Mean
91	186	205.764	0.00496	0.03682	25.215
92	187	254.174	0.00445	0.02479	32.016
93	188	232.605	0.0069	0.02796	24.832
94	189	233.98	0.00833	0.05996	22.738
95	190	263.166	0.01195	0.10076	19.541
96	191	257.425	0.00459	0.04144	25.503
97	192	256.571	0.00805	0.09014	20.759
98	194	120.587	0.00229	0.03489	24.9
99	201	224.551	0.00529	0.03419	25.725
100	202	205.433	0.00461	0.02926	30.524
101	203	249.434	0.00371	0.0328	32.368
102	204	85.694	0.04017	0.1176	17.071
103	205	235.843	0.01044	0.02671	30.315
104	206	232.277	0.00856	0.06492	25.349
105	207	235.297	0.00365	0.02516	28.936
106	208	231.013	0.0062	0.03452	27.18
107	209	240.741	0.00618	0.03684	26.005
108	210	250.265	0.00536	0.03259	31.658
109	211	281.718	0.00466	0.03724	24.341
110	212	276.805	0.00432	0.03725	26.822
111	213	323.304	0.00444	0.01799	27.333
112	215	257.687	0.00448	0.02406	29.643
113	216	255.419	0.00581	0.02896	28.176
114	224	258.438	0.02336	0.13981	19.175
115	225	244.456	0.01797	0.08232	19.716
116	226	248.632	0.00612	0.0619	22.801
117	232	261.604	0.01442	0.05169	22.406
118	234	278.194	0.00983	0.08695	22.486
119	235	239.296	0.01075	0.18166	12.043
120	237	220.144	0.01188	0.07656	22.902
121	238	233.475	0.00982	0.07195	21.329
122	239	241.956	0.00744	0.03656	23.746
123	240	241.389	0.01352	0.06586	24.356
124	241	242.081	0.00775	0.06297	23.835
125	242	231.958	0.00753	0.04763	25.618
126	243	251.749	0.02449	0.13373	18.279
127	244	221.775	0.00983	0.1057	20.406
128	245	243.641	0.0091	0.05649	24.561
129	247	256.725	0.01561	0.05096	26.42
130	250	214.844	0.00582	0.03832	24.777
131	257	260.935	0.01472	0.07594	21.606
132	258	147.765	0.02151	0.06548	19.23
133	262	220.713	0.0157	0.14751	17.223
134	263	223.936	0.00445	0.05794	22.072
135	264	219.622	0.0097	0.09523	16.966

Master_Chart

Male					
S.No.	File	mean	jitter	shimmer	HNR
5.NO.	No.	pitch	(ddp)	(dda)	Mean
136	290	135.327	0.01169	0.04991	18.174
137	292	132.91	0.01475	0.08976	15.983
138	293	128.934	0.00565	0.10702	15.885
139	294	132.573	0.00455	0.11062	17.614
140	295	148.991	0.00732	0.10965	19.941
141	296	106.493	0.00941	0.35361	7.147
142	311	141.772	0.00507	0.05177	26.416
143	312	131.649	0.00629	0.04622	21.604
144	313	148.08	0.00942	0.04545	19.175
145	314	165.673	0.01549	0.13609	17.021
146	315	128.253	0.00602	0.05033	21.55
147	316	136.83	0.00415	0.0418	26.194
148	317	122.267	0.01157	0.04098	21.326
149	318	114.256	0.01165	0.09195	18.988
150	319	181.672	0.01962	0.07457	22.483
151	320	142.404	0.00718	0.04058	26.555
152	321	143.293	0.00424	0.03236	28.917
153	322	140.568	0.00849	0.02797	25.986
154	323	122.677	0.01512	0.12253	18.053
155	324	113.925	0.0077	0.07422	20.765
156	334	113.347	0.00968	0.04667	23.817
157	335	111.835	0.0275	0.08491	18.607
158	336	120.089	0.00842	0.03743	23.469
159	337	121.304	0.00552	0.03401	23.722
160	338	134.592	0.00655	0.0455	25.756
161	339	148.063	0.00452	0.02755	27.947
162	340	120.118	0.01085	0.06468	21.956
163	341	190.297	0.00661	0.04793	26.841
164	342	128.722	0.00541	0.03701	28.226
165	343	135.288	0.1537	0.22815	11.373
166	344	121.237	0.01158	0.16373	14.721
167	352	153.735	0.00565	0.07731	20.919
168	353	101.54	0.00626	0.03796	23.136
169	354	163.744	0.00662	0.03665	22.89
170	356	112.337	0.00439	0.03251	26.189
171	357	132.094	0.01219	0.04247	21.99
172	358	157.382	0.02219	0.05317	20.291
173	360	155.514	0.00406	0.04228	23.66
174	364	157.714	0.00554	0.06466	21.746
175	396	104.391	0.00614	0.03411	22.053
176	397	114.947	0.0247	0.05857	17.563
177	398	125.886	0.06306	0.26455	10.196
178	399	117.877	0.01594	0.07564	22.952
179	400	124.764	0.00346	0.01659	25.872
180	401	190.297	0.00661	0.04793	26.841

	Female								
	File	Mean	Jitter	Shimmer	HNR				
S.No.	No.	pitch	(ddp)	(dda)	Mean				
136	265	137.955	0.00699	0.05955	23.415				
137	268	199.971	0.01133	0.27768	15.501				
138	270	253.001	0.02248	0.12309	19.554				
139	271	245.551	0.01195	0.05733	23.706				
140	272	243.49	0.0058	0.06279	22.715				
141	273	250.036	0.01378	0.05946	23.267				
142	274	204.706	0.03846	0.29915	8.685				
143	275	232.896	0.00858	0.065	22.232				
144	276	244.283	0.01087	0.13886	18.063				
145	291	140.031	0.00372	0.06584	17.028				
146	297	237.179	0.00589	0.06231	19.984				
147	298	234.995	0.00411	0.0695	22.379				
148	299	172.212	0.00699	0.07949	19.675				
149	300	245.665	0.00582	0.0865	20.011				
150	301	213.105	0.00554	0.04502	26.09				
151	302	199.582	0.0125	0.07904	16.611				
152	303	250.263	0.01583	0.0974	20.001				
153	305	226.138	0.01215	0.06823	21.747				
154	306	196.218	0.01349	0.1027	20.377				
155	307	227.435	0.00497	0.05281	22.716				
156	308	248.522	0.01402	0.08492	20.854				
157	309	203.886	0.00818	0.04324	21.567				
158	310	250.2	0.01553	0.09654	19.857				
159	325	244.862	0.00634	0.08378	19.114				
160	326	263.988	0.0074	0.05116	23.141				
161	327	130.347	0.00574	0.10142	19.761				
162	328	269.27	0.01384	0.12659	17.659				
163	329	264.327	0.00983	0.06296	20.586				
164	330	238.933	0.00952	0.0832	18.758				
165	331	268.679	0.00702	0.05711	22.332				
166	332	212.365	0.0083	0.05307	20.083				
167	333	259.263	0.00631	0.0322	23.294				
168	345	270.002	0.0069	0.03938	24.46				
169	346	257.226	0.00762	0.03935	27.275				
170	347	256.643	0.00877	0.05354	23.545				
171	348	244.957	0.01174	0.05251	21.424				
172	349	256.268	0.00707	0.0476	23.041				
173	350	267.892	0.0049	0.03063	26.832				
174	351	252.241	0.01002	0.06354	19.49				
175	361	239.653	0.00456	0.03066	24.658				
176	362	238.936	0.00893	0.07083	23.101				
177	363	258.826	0.00521	0.0309	27.821				
178	365	250.443	0.00704	0.0663	22.496				
179	366	237.689	0.00837	0.06029	21.314				
180	367	223.769	0.013	0.03061	25.276				

Master_Chart

Male								
S.No.	File	mean	jitter	shimmer	HNR			
	No.	pitch	(ddp)	(dda)	Mean			
181	429	159.842	0.00871	0.1455	14.371			
182	430	157.714	0.00554	0.06466	21.746			
183	431	85.519	0.01627	0.06891	14.345			
184	433	132.806	0.00908	0.07243	18.072			
185	442	154.941	0.01173	0.05193	21.385			
186	443	104.944	0.00791	0.04145	24.626			
187	444	142.342	0.00678	0.0518	20.384			
188	446	211.914	0.01804	0.0653	21.695			
189	447	118.988	0.00601	0.04728	24.053			
190	448	124.744	0.00708	0.04925	23.284			
191	450	132.911	0.01442	0.17265	12.843			
192	453	130.357	0.00572	0.04016	26.19			
193	454	127.991	0.01791	0.14865	14.272			
194	455	121.665	0.0088	0.06571	22.79			
195	465	219.919	0.00416	0.03741	24.066			
196	466	219.54	0.00523	0.0508	26.241			
197	478	104.968	0.00937	0.06577	21.21			
198	479	122.334	0.01332	0.07785	19.008			
199	487	135.632	0.01067	0.04411	23.016			
200	488	103.09	0.00918	0.05744	19.254			
201	489	133.533	0.01045	0.08424	14.785			
202	490	223.59	0.00807	0.04602	23.017			
203	491	130.091	0.00706	0.04578	22.114			
204	492	153.936	0.00645	0.05319	21.287			
205	493	142.347	0.01787	0.03145	21.841			
206	494	135.456	0.0219	0.04425	21.716			
207	495	108.944	0.01011	0.07096	23.161			
208	496	116.35	0.00682	0.06312	24.726			
209	497	134.129	0.00529	0.06026	22.348			
210	498	159.221	0.00684	0.05247	20.822			
211	499	139.975	0.00259	0.03493	21.723			
212	500	123.536	0.00623	0.11517	17.571			
213	512	145.655	0.01149	0.04377	19.781			
214	513	133.668	0.01396	0.03537	23.559			
215	514	148.365	0.01336	0.0436	17.848			
216	534	136.573	0.00535	0.02679	26.18			
217	535	144.926	0.01086	0.05012	22.379			
218	536	126.093	0.00552	0.0293	25.43			
219	537	138.128	0.00527	0.02588	28.931			
220	538	110.741	0.14634	0.32438	7.715			
221	539	114.152	0.00823	0.0379	17.851			
222	540	134.757	0.01283	0.03574	23.832			
223	541	119.043	0.00458	0.03476	25.192			
224	542	120.194	0.01621	0.07123	19.898			
225	543	145.485	0.00789	0.05425	20.797			

		F	emale		
C No	File	Mean	Jitter	Shimmer	HNR
S.No.	No.	pitch	(ddp)	(dda)	Mean
181	368	219.919	0.00416	0.03741	24.066
182	369	218.509	0.01028	0.05833	21.662
183	370	232.938	0.00678	0.03694	26.398
184	371	231.271	0.01988	0.03486	24.304
185	372	216.67	0.00683	0.03739	25.395
186	373	252.354	0.01157	0.08201	19.313
187	374	227.036	0.0054	0.02911	28.83
188	375	208.521	0.00839	0.07625	20.91
189	376	226.02	0.00727	0.04603	24.597
190	377	241.011	0.00506	0.01883	31.942
191	378	237.651	0.00555	0.02673	27.647
192	379	226.908	0.00983	0.04082	23.622
193	380	228.862	0.01046	0.04955	21.406
194	381	233.602	0.00557	0.05678	24.789
195	382	231.067	0.00345	0.03193	29.034
196	383	282.86	0.00528	0.02723	27.746
197	384	272.252	0.0045	0.02613	27.536
198	385	259.861	0.00563	0.03048	25.934
199	386	261.964	0.0034	0.02011	28.999
200	387	259.709	0.01492	0.07677	18.914
201	388	256.072	0.01433	0.03698	19.939
202	390	256.475	0.01064	0.08349	20.275
203	391	253.027	0.00349	0.04517	23.535
204	392	251.501	0.01226	0.05909	20.613
205	393	232.79	0.00678	0.03409	29.261
206	394	214.711	0.00478	0.03283	24.989
207	402	195.069	0.01587	0.13331	20.386
208	403	194.625	0.01316	0.09448	19.261
209	404	196.218	0.01349	0.1027	20.377
210	405	176.07	0.01173	0.14942	16.562
211	406	197.439	0.01027	0.03603	22.141
212	407	199.582	0.0125	0.07904	16.611
213	408	200.928	0.00938	0.11107	17.288
214	409	201.103	0.00548	0.06053	24.334
215	410	201.636	0.0147	0.07202	18.229
216	411	201.826	0.00857	0.04806	20.639
217	412	204.157	0.00714	0.04502	26.468
218	413	204.015	0.00738	0.02946	25.884
219	414	203.886	0.00818	0.04324	21.567
220	415	204.706	0.03846	0.29915	8.685
221	416	204.832	0.00944	0.0786	18.633
222	417	205.433	0.00461	0.02926	30.524
223	418	205.764	0.00496	0.03682	25.215
224	419	206.554	0.0062	0.03603	26.76
225	420	207.474	0.00676	0.03961	28.119

Master_Chart

	Male							
S.No.	File	mean	jitter	shimmer	HNR			
5.INO.	No.	pitch	(ddp)	(dda)	Mean			
226	544	136.07	0.00721	0.10443	15.663			
227	545	168.056	0.00634	0.02052	24.496			
228	546	128.032	0.00859	0.04274	20.123			
229	547	144.362	0.00533	0.08039	19.848			
230	548	157.449	0.01734	0.04237	26.787			
231	549	140.869	0.00387	0.0221	29.348			
232	550	137.227	0.00722	0.04617	25.011			
233	551	108.93	0.00897	0.07199	21.091			
234	552	129.611	0.00349	0.02046	29.336			
235	553	162.704	0.00478	0.02662	29.942			
236	554	137.924	0.00527	0.0402	28.34			
237	555	120.22	0.0063	0.0152	23.081			
238	556	133.482	0.00893	0.03678	21.261			
239	603	132.58	0.00932	0.04982	24.201			
240	604	108.33	0.01601	0.20862	16.129			
241	605	120.302	0.00795	0.12346	17.285			
242	606	132.511	0.00651	0.12546	18.36			
243	607	102.277	0.0064	0.11040	17.242			
244	608	111.344	0.02282	0.0922	16.397			
245	609	216.101	0.02202	0.20093	13.052			
246	611	134.021	0.02525	0.06417	23.822			
240	612	106.858	0.01034	0.18073	16.06			
247	616	129.183	0.01043	0.18073	18.792			
248	617	129.183	0.01074	0.18237	16.644			
249	618	126.459	0.01074	0.15292	17.593			
251	619	145.206	0.00986	0.08012	22.667			
252	629	123.695	0.00798	0.17501	18.424			
253	630	116.781	0.01081	0.27086	11.864			
254	631	125.01	0.07795	0.2054	9.822			
255	632	146.461	0.01559	0.25356	12.221			
256	633	131.145	0.00552	0.03735	27.74			
257	635	125.563	0.00481	0.05262	25.957			
258	636	131.324	0.00712	0.2209	15.431			
259	638	131.3	0.01218	0.05873	19.602			
260	644	169.419	0.00445	0.04465	23.713			
261	645	113.677	0.0085	0.082	16.418			
262	647	129.561	0.02999	0.42094	7.873			
263	648	124.962	0.00516	0.0474	21.033			
264	649	121.637	0.0112	0.05251	18.256			
265	650	173.463	0.0062	0.05834	25.253			
266	651	163.38	0.00645	0.08473	20.533			
267	652	129.784	0.00727	0.08399	22.268			
268	653	140.687	0.01998	0.08716	19.584			
269	654	140.273	0.01098	0.12193	19.314			
270	661	105.067	0.00652	0.0499	15.858			

S.No.Mean pichJitter (ddp)Shimmer (dd)HNR Mean226421207.0080.03110.164413.936227422208.0520.00920.0576521.461228423208.430.01540.018915.715229424208.090.01170.0639318.091230425208.720.01320.0058310.0582231426208.330.005960.0148320.525233428233.7740.01060.0139320.516234432213.5250.00530.0598221.356235434233.7740.01060.0394320.517236435232.520.00540.0134316.361237437253.200.00540.0134316.361238438284.200.00490.0134316.361241441252.890.00410.0141316.361242445289.9670.01410.0141516.361244451234.020.01410.0141516.361244451234.020.01410.0141516.361244451234.020.01410.0141516.361244451234.020.01410.014316.361244451249.030.01410.014316.361244451249.040.01430.014116.3612444510.2141<	Female							
No.pitcn(ddp)(dda)Mean226421207.9080.03310.2164413.936227422208.0520.009270.0576521.461228423208.340.011790.0639318.091230425208.720.013270.1005818.357231426208.3830.005960.0945820.582232427249.0860.013080.1346920.552233428279.4840.004740.0189332.948234432218.3650.005530.0598221.356235434233.7740.01660.089320.513237437253.2010.006140.0354425.27238438284.2040.009390.0853418.751239439244.2210.007570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.0081318.3332444512442510.004360.1415016.36524525229.0860.008560.035224.341246456219.8470.007610.0762622.04247457218.6210.004360.1415015.865248458218.7010.028321.661250460219.920.01280.05333 <t< th=""><th>S No</th><th>File</th><th>Mean</th><th>Jitter</th><th>Shimmer</th><th>HNR</th></t<>	S No	File	Mean	Jitter	Shimmer	HNR		
227422208.0520.009270.0576521.461228423208.340.015540.2018815.715229424208.4090.011790.0639318.091230425208.7720.013270.1005818.357231426208.3830.005960.0945820.582232427249.0860.013080.1346920.155233428279.4840.004740.0189332.948234432218.3650.008530.0598221.356235434233.7740.010660.089320.371236436232.5520.006590.0598220.539237437253.2010.006140.0356425.27238438284.2040.009390.0853418.751239439244.210.007570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.058321.662248458218.7010.004320.0627122.61254463<	5.100.		pitch	(ddp)	(dda)	Mean		
228423208.340.015540.2018815.715229424208.4090.011790.0639318.091230425208.7720.013270.1005818.357231426208.3830.005960.0945820.582232427249.0860.013080.1346920.155233428279.4840.004740.0189332.948234432218.3650.008530.0598221.356235434233.7740.010660.089320.371236436232.5520.006590.0598220.539237437253.2010.001410.0356425.27238438284.2040.009390.0853418.751239439244.2210.007570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365244451234.0620.004360.0538523.949247457218.6210.004360.0533321.662250460218.5090.01280.0762622.041251461220.310.008710.0762622.904255462 <td>226</td> <td>421</td> <td>207.908</td> <td>0.0331</td> <td>0.21644</td> <td>13.936</td>	226	421	207.908	0.0331	0.21644	13.936		
229424208.4090.011790.0639318.091230425208.7720.013270.1005818.357231426208.3830.005960.0945820.582232427249.0860.013080.1346920.155233428279.4840.004740.0189332.948234432218.3650.005530.0598220.539235434233.7740.010660.089320.371236436232.5520.006590.0598220.539237437253.2010.006140.0356425.27238438284.2040.09390.0853418.751239439244.2210.07570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.053321.662248458218.7010.04420.0627122.201250460218.5090.01220.076717.759254464219.90.013390.1892613.7725546722	227	422	208.052	0.00927	0.05765	21.461		
230425208.7720.013270.1005818.357231426208.3830.005960.0945820.582232427249.0860.013080.1346920.155233428279.4840.004740.0189332.948234432218.3650.005530.0598221.356235434233.7740.010660.089320.371236436232.5520.006590.0598220.539237437253.2010.006140.0356425.27238438284.2040.09390.0853418.751239439244.2210.07570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.053321.662247457218.6210.004360.1316415.865248458218.7010.004230.0627122.261250460218.5090.01220.076717.759254464219.90.013390.1892613.772554672	228	423	208.34	0.01554	0.20188	15.715		
231426208.3830.005960.0945820.582232427249.0860.013080.1346920.155233428279.4840.004740.0189332.948234432218.3650.008530.0598221.356235434233.7740.010660.089320.371236436232.5520.006590.0598220.539237437253.2010.006140.0356425.27238438284.2040.09390.0853418.751239439244.2210.007570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.01380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004260.028321.626250460218.5090.01280.0762622.041251461220.310.008710.0762622.042254464219.90.013390.1892613.772554672	229	424	208.409	0.01179	0.06393	18.091		
232427249.0860.013080.1346920.155233428279.4840.004740.0189332.948234432218.3650.008530.0598221.356235434233.7740.010660.089320.371236436232.5520.006590.0598220.539237437253.2010.006140.0356425.27238438284.2040.09390.0853418.751239439244.2210.007570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.01380.1316415.865245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004280.0627122.014250460219.990.01280.0533321.662251461220.310.004710.0373724.972254464219.90.013390.1892613.77255467220.4120.008710.0749919.9325847022	230	425	208.772		0.10058	18.357		
233428279.4840.004740.0189332.948234432218.3650.008530.0598221.356235434233.7740.010660.089320.371236436232.5520.006590.0598220.539237437253.2010.006140.0356418.751238438284.2040.009390.0853418.751239439244.2210.007570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004220.028321.662250460218.5090.012820.0627122.261251461220.3310.004710.0373724.972254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
234432218.3650.008530.0598221.356235434233.7740.010660.089320.371236436232.5520.006590.0598220.539237437253.2010.006140.0356425.27238438284.2040.00390.0853418.751239439244.2210.007570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004200.028321.662250460218.5090.010280.0533321.662251461220.3310.008420.0627122.201253463220.0670.012520.076717.759254464219.90.013390.1892613.77255467220.4120.008710.0373724.972256468220.30.004710.0373724.9722574692	232	427			0.13469			
235434233.7740.010660.089320.371236436232.5520.006590.0598220.539237437253.2010.006140.03564125.27238438284.2040.009390.0853418.751239439244.2210.007570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004220.028327.977249459218.4770.005610.0762622.04250460218.5090.01280.0627122.61251461220.310.008420.0627122.261254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0739825.86526047220		428						
236436232.5520.006590.0598220.539237437253.2010.006140.03564125.27238438284.2040.009390.0853418.751239439244.2210.007570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007660.0538523.949247457218.6210.004360.1316415.865248458218.7010.004920.028321.662250460218.5090.01280.0533321.662251461220.3310.008420.0627122.261252462219.6220.00970.0952316.966253463220.0670.012520.0767617.759254464219.90.013390.1892613.77255467220.1420.008710.0373724.972256468220.30.014790.393625.865260472220.550.00370.025926.127261473220				0.00853	0.05982	21.356		
237437253.2010.006140.0356425.27238438284.2040.009390.0853418.751239439244.2210.007570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004920.028327.977249459218.4470.005610.0762622.204250460218.5090.01280.0583321.662251461220.3310.008420.0627122.261254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.550.00370.025926.127261473220.550.00370.025925.865260472220.55	235	434	233.774	0.01066	0.0893	20.371		
238438284.2040.009390.0853418.751239439244.2210.007570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004220.028327.977249459218.4770.005610.0762622.204250460218.5090.01280.0627122.661251461220.3310.008420.0627122.611252462219.6220.00970.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.4120.008710.0749919.93258470220.550.00370.025926.127256468220.30.014440.0393625.865260472220.550.00370.025926.127254476221.37	236		232.552	0.00659	0.05982	20.539		
239439244.2210.007570.1218415.844240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004920.028327.977249459218.4470.005610.0762622.204250460218.5090.010280.027122.616251461220.310.008420.0627122.616253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.4120.008710.0749919.93256468220.30.004710.0373724.972257469220.550.00370.025926.127256474220.550.00370.025926.127261473220.8770.024110.0788925.865260472220.550.00370.025926.127261476221.37 <td>237</td> <td>437</td> <td>253.201</td> <td>0.00614</td> <td>0.03564</td> <td>25.27</td>	237	437	253.201	0.00614	0.03564	25.27		
240440253.8090.014120.1047619.173241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004920.028327.977249459218.4470.005610.0762622.204250460218.5090.010280.0583321.662251461220.3310.008420.0627122.261252462219.6220.0070.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.4120.008710.0749919.93256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.550.00370.025926.127261473220.7130.01440.0393625.865260472220.550.00370.025926.127263475220.684<	238	438	284.204	0.00939	0.08534	18.751		
241441252.8930.006490.0513926.512242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004920.028327.977249459218.4470.005610.0762622.204250460218.5090.01280.0583321.662251461220.3310.008420.0627122.261252462219.6220.00970.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.1440.01880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5250.00370.025926.127261473220.8770.024110.0789822.745262474220.7130.01570.1475117.223263475220.	239	439	244.221	0.00757	0.12184	15.844		
242445289.9670.009410.0706124.132243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004920.028327.977249459218.4470.005610.0762622.204250460218.5090.010280.0583321.662251461220.3310.008420.0627122.261252462219.6220.00970.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0349625.865260472220.550.00370.025926.127261473220.8770.024110.0789822.745263475220.6840.007660.0889619.154264476221.370.015310.11475117.223265480247.6760.004810.10485324.413264476	240	440	253.809	0.01412	0.10476	19.173		
243449231.8960.016110.0811318.333244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004920.028327.977249459218.4470.005610.0762622.204250460218.5090.01280.0583321.662251461220.3310.008420.0627122.261252462219.6220.00970.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0373625.865260472220.5250.00370.025926.127261473220.8770.024110.0798922.745262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.004810.1104618.06265480247.6760.014810.1104618.06266481225.7	241	441	252.893	0.00649	0.05139	26.512		
244451234.0620.010380.1415616.365245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004920.028327.977249459218.4470.005610.0762622.204250460218.5090.010280.0583321.662251461220.3310.008420.0627122.261252462219.6220.00970.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.7130.01570.1475117.223261473220.8770.024110.0789922.745262474220.7130.01570.1475117.233263475220.6840.007660.0889619.154264476221.370.004910.1104618.06265480247	242	445	289.967	0.00941	0.07061	24.132		
245452229.0860.008560.035224.341246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004920.028327.977249459218.4470.005610.0762622.204250460218.5090.010280.0583321.662251461220.3310.008420.0627122.261252462219.6220.00970.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.550.00370.025926.127261473220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.004810.1104618.06265480247.6760.004810.1104618.06266481225.7430.015110.0485324.413268483230.1820.018150.1089319.061269484237.12	243	449	231.896	0.01611	0.08113	18.333		
246456219.0840.007560.0538523.949247457218.6210.004360.1316415.865248458218.7010.004920.028327.977249459218.4470.005610.0762622.204250460218.5090.010280.0583321.662251461220.3310.008420.0627122.261252462219.6220.00970.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.8770.024110.0788919.154263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230	244	451	234.062	0.01038	0.14156	16.365		
247457218.6210.004360.1316415.865248458218.7010.004920.028327.977249459218.4470.005610.0762622.204250460218.5090.010280.0583321.662251461220.3310.008420.0627122.261252462219.6220.00970.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.	245	452	229.086	0.00856	0.0352	24.341		
248458218.7010.004920.028327.977249459218.4470.005610.0762622.204250460218.5090.010280.0583321.662251461220.3310.008420.0627122.261252462219.6220.00970.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.8770.024110.0798922.745262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.	246	456	219.084	0.00756	0.05385	23.949		
249459218.4470.005610.0762622.204250460218.5090.010280.0583321.662251461220.3310.008420.0627122.261252462219.6220.00970.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.8770.024110.0788922.745262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	247	457	218.621	0.00436	0.13164	15.865		
250460218.5090.010280.0583321.662251461220.3310.008420.0627122.261252462219.6220.00970.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	248	458	218.701	0.00492	0.0283	27.977		
251461220.3310.008420.0627122.261252462219.6220.00970.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.8770.024110.0798922.745262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	249	459	218.447	0.00561	0.07626	22.204		
252462219.6220.00970.0952316.966253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.8770.024110.0798922.745262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	250	460	218.509	0.01028	0.05833	21.662		
253463220.0670.012520.0776717.759254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	251	461	220.331	0.00842	0.06271	22.261		
254464219.90.013390.1892613.77255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.8770.024110.0798922.745262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	252	462	219.622	0.0097	0.09523	16.966		
255467220.1440.011880.0765622.902256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.7130.01570.1475117.223262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	253	463	220.067	0.01252	0.07767	17.759		
256468220.30.004710.0373724.972257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.7130.01570.1475117.223262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	254	464	219.9	0.01339	0.18926	13.77		
257469220.4120.008710.0749919.93258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.8770.024110.0798922.745262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	255	467	220.144	0.01188	0.07656	22.902		
258470220.6160.014990.1395816.391259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.8770.024110.0798922.745262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	256	468	220.3	0.00471	0.03737	24.972		
259471220.5210.004440.0393625.865260472220.550.00370.025926.127261473220.8770.024110.0798922.745262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	257	469	220.412	0.00871	0.07499	19.93		
260472220.550.00370.025926.127261473220.8770.024110.0798922.745262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	258	470	220.616	0.01499	0.13958	16.391		
261473220.8770.024110.0798922.745262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	259	471	220.521	0.00444	0.03936	25.865		
262474220.7130.01570.1475117.223263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	260	472	220.55	0.0037	0.0259	26.127		
263475220.6840.007660.0889619.154264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	261	473	220.877	0.02411	0.07989	22.745		
264476221.370.006960.0537422.963265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	262	474	220.713	0.0157	0.14751	17.223		
265480247.6760.004810.1104618.06266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	263	475	220.684	0.00766	0.08896	19.154		
266481225.7430.015310.1151717.571267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	264	476	221.37	0.00696	0.05374	22.963		
267482226.2230.012110.0485324.413268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	265	480	247.676	0.00481	0.11046	18.06		
268483230.1820.018150.1089319.061269484237.1270.010110.0443122.086	266	481	225.743	0.01531	0.11517	17.571		
269 484 237.127 0.01011 0.04431 22.086	267	482	226.223	0.01211	0.04853	24.413		
	268	483	230.182	0.01815	0.10893	19.061		
270 485 225.356 0.00786 0.05247 20.822	269	484	237.127	0.01011	0.04431	22.086		
	270	485	225.356	0.00786	0.05247	20.822		

Master_Chart

Male							
	File	mean	jitter	shimmer	HNR		
S.No.	No.	pitch	(ddp)	(dda)	Mean		
271	662	119.427	0.00586	0.04907	21.62		
272	663	103.934	0.00782	0.15189	16.219		
273	664	119.694	0.00938	0.1104	21.423		
274	665	105.059	0.00641	0.07146	19.637		
275	678	151.789	0.0072	0.04104	23.24		
276	679	144.471	0.00494	0.0304	25.302		
277	680	138.99	0.00463	0.01974	25.836		
278	681	152.831	0.00609	0.03988	22.198		
279	682	125.403	0.00497	0.03605	25.914		
280	683	128.68	0.0111	0.05544	23.128		
281	684	106.866	0.00375	0.0289	25.576		
282	685	138.664	0.00583	0.02301	26.93		
283	686	108.401	0.00632	0.04674	20.653		
284	687	124.024	0.00359	0.03615	24.253		
285	688	135.961	0.00822	0.06801	18.58		
286	704	127.793	0.00948	0.11617	14.682		
287	705	121.369	0.0102	0.03657	20.849		
288	706	112.673	0.00961	0.04026	22.041		
289	707	109.413	0.00826	0.05169	18.354		
290	708	121.961	0.01457	0.18801	12.152		
291	709	121.993	0.00672	0.04523	18.634		
292	710	125.379	0.00376	0.05003	18.682		
293	711	130.652	0.00404	0.10077	15.207		
294	712	127.425	0.00789	0.0773	15.907		
295	715	131.66	0.02489	0.32858	10.374		
296	716	119.172	0.02433	0.3354	11.156		
297	717	137.323	0.00619	0.0859	21.207		
298	718	124.254	0.02401	0.10194	15.206		
299	732	107.155	0.01433	0.20684	15.701		
300	733	116.081	0.02357	0.12967	16.113		
301	734	130.874	0.0077	0.15558	17.946		
302	735	130.176	0.02482	0.11239	15.252		
303	736	130.198	0.00937	0.06839	21.362		
304	737	130.364	0.02723	0.06781	18.931		
305	738	142.512	0.02423	0.05712	21.342		
306	740	136.933	0.01563	0.06503	21.426		
307	741	131.987	0.01215	0.04207	24.335		
308	742	128.495	0.01003	0.06103	24.671		
309	743	125.053	0.03601	0.12401	16.748		
310	753	107.204	0.01052	0.06759	23.066		
311	754	152.028	0.01822	0.23696	15.234		
312	764	137.339	0.01193	0.03272	25.234		
313	765	139.445	0.00605	0.09834	20.22		
314	766	161.481	0.00677	0.05397	25.581		
315	767	149.99	0.00431	0.04313	23.775		

Female								
C No	File	Mean	Jitter	Shimmer	HNR			
S.No.	No.	pitch	(ddp)	(dda)	Mean			
271	486	234.037	0.00915	0.06725	18.948			
272	501	220.616	0.01499	0.13958	16.391			
273	502	240.132	0.00802	0.05496	24.397			
274	503	223.084	0.00555	0.04273	25.171			
275	504	227.631	0.00469	0.02353	27.835			
276	505	248.112	0.01061	0.02489	22.639			
277	506	232.982	0.00461	0.02693	27.024			
278	507	231.768	0.00401	0.02608	28.8			
279	508	241.027	0.00405	0.02313	27.845			
280	510	249.506	0.00564	0.03194	25.505			
281	511	254.409	0.01337	0.04501	19.728			
282	515	273.096	0.01526	0.06591	19.273			
283	516	255.526	0.00618	0.02089	27.983			
284	517	221.662	0.01077	0.04905	24.611			
285	518	274.002	0.0088	0.04442	21.933			
286	519	228.042	0.00546	0.01996	33.809			
287	520	253.372	0.00602	0.03316	25.711			
288	521	274.79	0.00319	0.02241	31.276			
289	522	244.941	0.00769	0.03013	26.656			
290	523	221.809	0.00863	0.04036	24.337			
291	524	250.135	0.00458	0.03956	26.847			
292	525	253.187	0.0113	0.03864	25.015			
293	526	277.773	0.00706	0.03641	29.752			
294	527	224.274	0.00937	0.02734	25.784			
295	528	278.22	0.00509	0.01829	31.579			
296	529	225.103	0.00667	0.04209	26.891			
297	530	241.584	0.00386	0.02208	29.193			
298	531	234.029	0.00623	0.02459	28.522			
299	532	265.91	0.00445	0.02789	32.232			
300	533	252.952	0.01124	0.0476	27.12			
301	557	232.785	0.01998	0.21314	12.911			
302	558	233.138	0.00471	0.04665	22.496			
303	559	232.896	0.00858	0.065	22.232			
304	560	232.79	0.00678	0.03409	29.261			
305	561	233.475	0.00982	0.07195	21.329			
306	562	233.929	0.00894	0.10731	17.454			
307	563	233.695	0.01109	0.11358	20.401			
308	564	233.98	0.00833	0.05996	22.738			
309	565	233.602	0.00557	0.05678	24.789			
310	566	234.029	0.00623	0.02459	28.522			
311	567	233.774	0.01066	0.0893	20.371			
312	568	234.062	0.01038	0.14156	16.365			
313	569	234.037	0.00915	0.06725	18.948			
314	570	234.802	0.01857	0.15601	13.829			
315	571	233.998	0.00503	0.05438	23.467			

Master_Chart

Male							
S.No.	File	mean	jitter	shimmer	HNR		
5.INO.	No.	pitch	(ddp)	(dda)	Mean		
316	768	164.438	0.02887	0.11255	18.41		
317	769	139.69	0.00609	0.28481	14.756		
318	770	146.975	0.01368	0.19782	13.209		
319	771	138.677	0.00528	0.08755	20.731		
320	772	139.026	0.02763	0.22156	13.527		
321	773	145.385	0.00795	0.04039	22.897		
322	774	125.579	0.01259	0.05387	21.344		
323	775	152.548	0.00797	0.0856	20.629		
324	776	125.007	0.01014	0.16589	15.632		
325	777	140.66	0.00557	0.09493	17.613		
326	780	122.886	0.01358	0.05311	22.549		
327	781	141.73	0.01647	0.19188	12.962		
328	782	153.735	0.00565	0.07731	20.919		
329	783	142.815	0.00416	0.10032	20.036		
330	784	115.872	0.02273	0.05337	22.67		
331	798	161.254	0.00798	0.01181	27.829		
332	799	123.781	0.02297	0.09399	17.724		
333	800	165.899	0.00645	0.0695	22.929		
334	803	155.777	0.01729	0.05828	21.323		
335	804	107.821	0.01053	0.04286	22.264		
336	805	153.27	0.0054	0.03261	22.628		
337	807	140.447	0.00503	0.03803	23.706		
338	809	143.106	0.00731	0.032	26.804		
339	811	111.192	0.00687	0.02676	24.29		
340	812	140.496	0.01121	0.06091	15.751		
341	813	160.766	0.00445	0.04851	21.157		
342	814	115.034	0.00402	0.02292	25.042		
343	815	131.739	0.00477	0.04018	21.686		
344	816	122.809	0.01607	0.12656	18.365		
345	818	134.367	0.00439	0.02177	29.792		
346	819	134.424	0.00574	0.02089	28.5		
347	820	112.238	0.00862	0.05951	20.14		
348	821	129.227	0.00639	0.06279	21.716		
349	822	138.845	0.00575	0.03232	23.607		
350	823	107.509	0.00657	0.05316	21.374		
351	824	118.899	0.00809	0.03295	23.936		
352	825	144.077	0.0105	0.06215	23.883		
353	826	145.715	0.0219	0.09934	14.657		
354	827	171.301	0.00489	0.0645	21.775		
355	828	140.498	0.00781	0.06066	19.544		
356	829	136.935	0.0105	0.07361	19.93		
357	830	165.119	0.00103	0.04731	22.206		
358	831	130.559	0.00807	0.02472	19.492		
359	849	119.353	0.06893	0.07851	14.661		
222	5.5		5.55555	5.57 051			

Female								
.	File	Mean	Jitter	Shimmer	HNR			
S.No.	No.	pitch	(ddp)	(dda)	Mean			
316	572	235.959	0.00551	0.02482	26.409			
317	573	234.995	0.00411	0.0695	22.379			
318	574	235.297	0.00365	0.02516	28.936			
319	575	235.238	0.01933	0.15769	17.686			
320	576	235.653	0.00901	0.06107	21.858			
321	577	232.266	0.01421	0.08053	17.72			
322	578	235.843	0.01044	0.02671	30.315			
323	579	208.521	0.00839	0.07625	20.91			
324	580	236.439	0.01614	0.08532	20.862			
325	581	236.013	0.00818	0.06712	19.689			
326	582	236.204	0.0085	0.04748	20.969			
327	583	236.607	0.00886	0.0572	21.621			
328	584	236.527	0.0072	0.06768	19.583			
329	585	236.772	0.00856	0.06652	20.16			
330	586	236.799	0.01784	0.11792	17.055			
331	587	237.127	0.01011	0.04431	22.086			
332	588	237.179	0.00589	0.06231	19.984			
333	589	224.296	0.01325	0.07157	22.222			
334	590	237.255	0.01091	0.06445	21.575			
335	591	237.689	0.00837	0.06029	21.314			
336	592	237.651	0.00555	0.02673	27.647			
337	593	237.503	0.00781	0.07634	21.184			
338	594	237.171	0.00687	0.04347	23.449			
339	595	237.469	0.00551	0.03305	27.409			
340	596	237.484	0.01711	0.17928	14.59			
341	597	238.295	0.00774	0.07072	21.48			
342	598	237.953	0.00306	0.02307	30.561			
343	599	237.759	0.00934	0.08649	19.361			
344	600	239.296	0.01075	0.18166	12.043			
345	601	238.716	0.00991	0.05852	26.247			
346	602	208.052	0.00927	0.05765	21.461			
347	610	258.161	0.06427	0.26769	8.136			
348	613	208.34	0.01554	0.20188	15.715			
349	614	225.982	0.0056	0.05627	25.03			
350	615	220.3	0.00471	0.03737	24.972			
351	620	229.09	0.00742	0.19445	13.998			
352	621	237.484	0.01711	0.17928	14.59			
353	622	236.799	0.01784	0.11792	17.055			
354	623	255.281	0.01468	0.07654	20.963			
355	624	240.566	0.01155	0.07103	23.773			
356	625	248.892	0.00948	0.07768	19.633			
357	626	207.908	0.0331	0.21644	13.936			
358	627	242.359	0.02872	0.26261	9.923			
359	628	208.951	0.01407	0.13871	17.18			
360	634	242.359	0.02872	0.26261	9.923			

Master_Chart

	Male							
C N	File	mean	jitter	shimmer	HNR			
S.No.	No.	pitch	(ddp)	(dda)	Mean			
361	854	124.107	0.01181	0.0365	19.492			
362	855	160.257	0.01859	0.06947	22.352			
363	856	143.17	0.01159	0.09038	17.687			
364	858	137.735	0.00554	0.05199	24.81			
365	860	135.206	0.00363	0.0427	27.875			
366	861	137.026	0.00327	0.03699	29.953			
367	865	101.27	0.00699	0.04066	21.469			
368	866	97.405	0.01523	0.05395	17.341			
369	867	141.931	0.00754	0.04544	23.191			
370	868	121.01	0.02201	0.06371	16.995			
371	869	122.085	0.00928	0.05672	21.729			
372	878	162.023	0.01601	0.16919	18.478			
373	880	119.085	0.00562	0.29854	4.335			
374	884	165.541	0.00516	0.05345	23.449			
375	891	148.974	0.02398	0.04115	20.821			
376	892	99.568	0.02453	0.06084	21.08			
377	893	152.902	0.00716	0.0374	25.345			
378	894	135.921	0.04395	0.16719	16.689			
379	895	119.467	0.01091	0.04303	24.31			
380	896	127.037	0.00925	0.04646	25.375			
381	897	113.733	0.01665	0.06944	21.708			
382	898	103.286	0.00488	0.04169	24.155			
383	899	96.684	0.01695	0.05864	17.951			
384	901	120.537	0.00509	0.07826	21.937			
385	902	149.553	0.00416	0.07020	24.715			
386	903	116.662	0.02475	0.09958	19.257			
387	904	149.2	0.02473	0.05899	17.556			
388	908	278.194	0.00983	0.08695	22.486			
389	910	144.307	0.00583	0.07504	20.575			
390	911	118.405	0.00007	0.06119	16.483			
390	911	132.873	0.0081	0.07188	21.619			
392	912	133.621	0.00808	0.02899	27.847			
393	913	133.021	0.00407	0.02899	27.847			
395 394	933	122.163	0.00809	0.02958	23.024			
394 395	935 934	158.941	0.007	0.03643	21.175			
		130.941	0.01082	0.04088	22.658			
396	935							
397	936	187.776	0.00444	0.02668	27.539			
398	937	125.465	0.00805	0.05072	23.215			
399	938	138.432	0.00788	0.04766	20.38			
400	939	122.02	0.00583	0.12131	19.255			
401	940	124.124	0.00697	0.03639	26.112			
402	941	123.557	0.0073	0.05388	21.553			
403	942	104.157	0.01053	0.32621	10.611			
404	945	118.507	0.0272	-	0.711			
405	946	109.389	0.00728	0.19431	5.608			

Female								
S.No.	File	Mean	Jitter	Shimmer	HNR			
5.NO.	No.	pitch	(ddp)	(dda)	Mean			
361	637	276.829	0.01011	0.11675	16.276			
362	639	236.772	0.00856	0.06652	20.16			
363	640	255.297	0.01471	0.09977	19.601			
364	641	233.999	0.02421	0.08218	21.059			
365	642	243.946	0.00775	0.14827	16.975			
366	643	275.912	0.00945	0.07559	21.217			
367	646	244.283	0.01087	0.13886	18.063			
368	655	276.717	0.00956	0.08417	20.201			
369	656	309.601	0.00568	0.05043	24.376			
370	657	264.325	0.01455	0.06048	20.433			
371	658	238.295	0.00774	0.07072	21.48			
372	659	237.503	0.00781	0.07634	21.184			
373	660	233.134	0.00468	0.04976	23.248			
374	667	217.325	0.00466	0.07325	20.152			
375	668	262.398	0.01405	0.10345	18.363			
376	669	257.022	0.02826	0.15108	18.599			
377	670	254.843	0.02788	0.14932	16.691			
378	671	227.481	0.02309	0.21028	14.66			
379	672	206.554	0.0062	0.03603	26.76			
380	673	231.559	0.01552	0.09457	20.076			
381	674	240.744	0.00617	0.05589	23.054			
382	675	236.013	0.00818	0.06712	19.689			
383	676	248.775	0.00578	0.04632	24.581			
384	677	241.702	0.00889	0.13168	17.177			
385	689	221.561	0.01666	0.0524	23.99			
386	690	230.561	0.00718	0.04686	22.393			
387	691	218.701	0.00492	0.0283	27.977			
388	692	240.795	0.00535	0.04071	24.985			
389	693	226.773	0.00339	0.02158	28.224			
390	694	264.165	0.01282	0.04908	22.836			
391	695	187.039	0.00411	0.04775	26.458			
392	696	242.525	0.00421	0.01823	29.607			
393	697	210.604	0.00684	0.04354	27.351			
394	698	270.966	0.00695	0.0432	24.845			
395	699	224.696	0.01774	0.03549	20.346			
396	700	236.204	0.0085	0.04748	20.969			
397	701	212.164	0.01134	0.0697	19.198			
398	702	230.933	0.00923	0.04277	24.894			
399	703	211.359	0.00517	0.0381	23.221			
400	713	250.349	0.00296	0.02335	23.643			
401	714	241.41	0.00474	0.02444	24.94			
402	720	245.1	0.00963	0.09985	20.2			
403	721	258.214	0.02155	0.20994	13.166			
404	722	248.824	0.01721	0.11484	19.529			
405	723	251.088	0.01593	0.07715	22.488			
		I		I				

Master_Chart

			Male		Male							
S.No.	File	mean	jitter	shimmer	HNR							
5.NO.	No.	pitch	(ddp)	(dda)	Mean							
406	947	105.849	0.00687	0.1098	15.696							
407	948	217.97	0.01492	0.07451	12.691							
408	949	116.359	0.00664	0.06561	11.35							
409	950	114.317	0.00456	0.211	7.042							
410	951	119.353	0.06893	0.07851	14.661							
411	952	126.707	0.00827	0.04211	25.971							
412	953	109.295	0.02172	0.04131	17.305							
413	954	106.783	0.01234	0.05051	21.541							
414	955	141.357	0.02485	0.11695	18.497							
415	956	147.833	0.02658	0.08129	20.137							
416	957	129.367	0.00584	0.04238	23.82							
417	958	158.477	0.01068	0.04678	22.366							
418	959	115.568	0.007	0.05026	22.463							
419	960	123.589	0.01002	0.05853	21.693							
420	961	110.123	0.01637	0.08693	18.178							
421	962	109.55	0.00749	0.07948	21.473							
422	963	114.389	0.01059	0.15656	18.099							
423	964	107.764	0.00922	0.04687	23.205							
424	965	191.236	0.00537	0.1106	15.768							
425	966	109.973	0.00745	0.10838	12.164							
426	967	109.973	0.00745	0.10838	12.164							
427	968	125.485	0.01478	0.22183	10.522							
428	969	199.063	0.02259	0.34317	3.264							
429	970	122.814	0.00331	0.09053	10.016							
430	971	222.985	0.00768	0.14648	13.624							
431	974	199.971	0.01133	0.27768	15.501							
432	975	128.375	0.01869	0.05936	18.921							
433	985	116.472	0.01535	0.05391	21.666							
434	986	127.057	0.01333	0.1015	22.208							
435	987	119.098	0.01217	0.05956	19.294							
436		115.028	0.00708	0.10248	15.348							
430	988 998	141.323	0.00708	0.10248	26.558							
437	999	122.55	0.00344	0.02521	24.013							
438	359	111.836	0.00344	0.02321	21.208							
439	77	115.872	0.00755	0.05337	21.208							
440	82	115.872	0.02273	0.09958	19.257							
441		116.662	0.02475									
	97			0.10327	21.55							
443	101	120.089	0.00842	0.03743	23.469							
444	113	246.54	0.03609	0.16283	15.88							
445	115	121.369	0.0102	0.03657	20.849							
446	164	125.866	0.00626	0.05968	25.67							
447	233	114.027	0.01053	0.04634	23.971							
448	246	134.902	0.00809	0.02958	23.024							
449	304	141.73	0.01647	0.19188	12.962							
450	355	154.941	0.01173	0.05193	21.385							

		F	emale			
S.No.	File	Mean	Jitter	Shimmer	HNR	
5.110.	No.	pitch	(ddp)	(dda)	Mean	
406	724	253.591	0.00978	0.06259	22.684	
407	725	255.758	0.0232	0.0981	22.229	
408	726	256.508	0.03743	0.18446	15.212	
409	727	243.298	0.01089	0.0527	26.701	
410	728	247.911	0.00729	0.03374	25.846	
411	729	259.162	0.00779	0.08416	21.349	
412	730	272.926	0.01171	0.0563	25.596	
413	731	284.447	0.0166	0.15965	13.716	
414	744	220.684	0.00766	0.08896	19.154	
415	745	208.772	0.01327	0.10058	18.357	
416	746	255.204	0.01438	0.05787	25.877	
417	747	227.861	0.01713	0.17438	13.928	
418	748	252.99	0.02104	0.12163	19.495	
419	749	223.607	0.00782	0.09079	20.527	
420	750	230.572	0.00497	0.04582	23.727	
421	751	246.141	0.02061	0.23583	12.892	
422	752	257.691	0.01307	0.13881	15.99	
423	755	259.595	0.00616	0.05296	23.014	
424	756	245.898	0.0074	0.07817	19.126	
425	757	258.28	0.01083	0.16413	14.382	
426	758	245.473	0.01708	0.15312	15.784	
427	759	254.696	0.02373	0.12997	16.648	
428	760	244.76	0.02619	0.13974	17.364	
429	761	246.962	0.01264	0.07644	21.233	
430	762	233.998	0.00503	0.05438	23.467	
431	763	232.785	0.01998	0.21314	12.911	
432	778	264.325	0.01455	0.06048	20.433	
433	785	240.494	0.02046	0.14595	16.997	
434	786	230.211	0.01292	0.13028	17.598	
435	787	240.693	0.06261	0.26784	12.782	
436	788	240.737	0.01437	0.12013	17.117	
437	789	256.778	0.02448	0.17179	16.188	
438	790	239.133	0.06283	0.28032	11.968	
439	791	258.407	0.01897	0.11548	20.976	
440	792	246.202	0.00915	0.0522	27.139	
441	793	272.926	0.01171	0.0563	25.596	
442	794	273.096	0.01526	0.06591	19.273	
443	795	273.414	0.02172	0.17286	16.655	
444	796	274.002	0.0088	0.04442	21.933	
445	797	274.79	0.00319	0.02241	31.276	
446	801	251.517	0.00591	0.04816	22.165	
447	802	267.924	0.01087	0.08972	18.524	
448	808	220.55	0.0037	0.0259	26.127	
449	810	244.87	0.0073	0.06648	24.379	
450	817	289.967	0.00941	0.07061	24.132	

Master_Chart

	Male						
S.No.	File No.	mean pitch	jitter (ddp)	shimmer (dda)	HNR Mean		
451	395	183.356	0.00261	0.01632	33.129		
452	435	212.527	0.01107	0.04825	19.996		
453	719	253.427	0.01491	0.08892	19.128		
454	739	257.687	0.00448	0.02406	29.643		
455	806	278.194	0.00983	0.08695	22.486		
456	845	105.849	0.00687	0.1098	15.696		
457	890	173.717	0.01295	0.14553	14.333		
458	246	134.902	0.00809	0.02958	23.024		

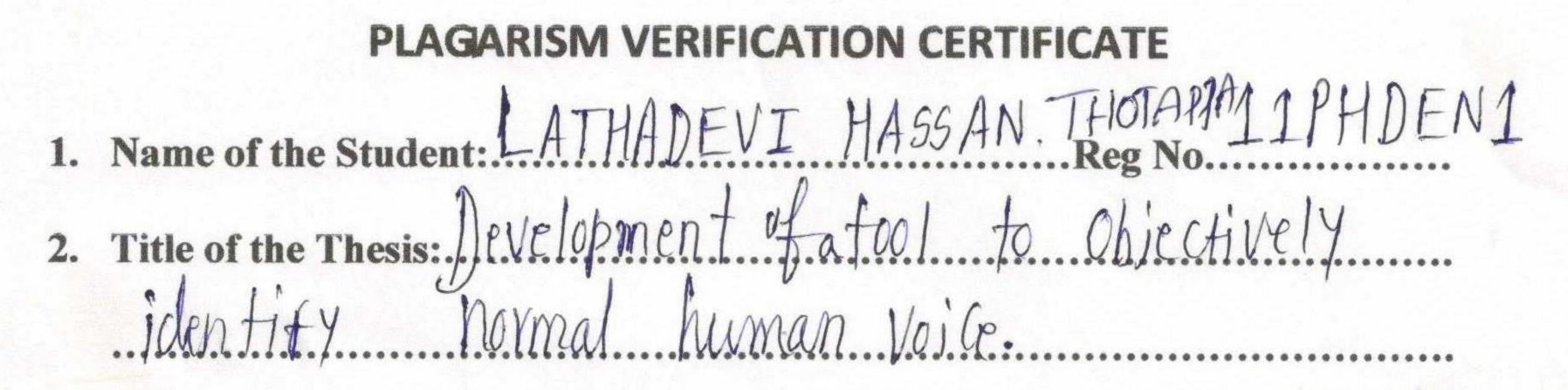
		F	emale		
S.No.	File	Mean	Jitter	Shimmer	HNR
5.NO.	No.	pitch	(ddp)	(dda)	Mean
451	833	147.411	0.00635	0.16423	10.051
452	834	204.68	0.023	0.12954	13.156
453	835	236.527	0.0072	0.06768	19.583
454	836	217.714	0.00361	0.02417	29.448
455	838	256.727	0.00565	0.03209	25.379
456	839	238.801	0.0041	0.01742	29.708
457	840	221.336	0.00734	0.02234	29.187
458	841	268.489	0.00808	0.06296	22.542
459	842	248.405	0.00305	0.02669	29.192
460	843	212.527	0.01107	0.04825	19.996
461	844	219.54	0.00523	0.0508	26.241
462	846	236.439	0.01614	0.08532	20.862
463	847	237.469	0.00551	0.03305	27.409
464	848	240.485	0.01051	0.06672	24.829
465	850	258.483	0.09822	0.47	2.051
466	851	237.953	0.00306	0.02307	30.561
467	852	211.538	0.00514	0.03047	25.233
468	857	219.084	0.00756	0.05385	23.949
469	859	220.331	0.00842	0.06271	22.261
470	862	218.447	0.00561	0.07626	22.204
471	863	221.37	0.00696	0.05374	22.963
472	864	233.138	0.00471	0.04665	22.496
473	870	240.83	0.00805	0.04602	22.816
474	871	231.668	0.00415	0.03712	23.869
475	872	231.287	0.00341	0.02686	28.19
476	873	214.957	0.00741	0.08628	19.179
477	874	216.334	0.0069	0.04401	25.108
478	875	247.034	0.00484	0.03033	26.694
479	876	241.393	0.0045	0.02708	29.372
480	877	220.412	0.00871	0.07499	19.93
481	879	222.906	0.00891	0.06074	21.492
482	881	230.338	0.00752	0.05501	20.575
483	882	221.443	0.01107	0.16077	15.618
484	883	216.39	0.00589	0.04005	27.97
485	885	268.828	0.02424	0.09812	17.726
486	886	240.025	0.00697	0.02923	26.587
487	887	244.912	0.00589	0.03402	25.601
488	888	248.25	0.00534	0.07778	20.936
489	889	228.042	0.00546	0.01996	33.809
490	900	275.912	0.00945	0.07559	21.217
491	905	278.22	0.00509	0.01829	31.579
492	906	278.285	0.00303	0.02205	29.199
493	907	278.175	0.01846	0.31782	1.02
494	909	279.426	0.00559	0.06016	23.448
495	915	278.285	0.00303	0.02205	29.199

Master_Chart

Male					
S.No.	File	mean	jitter	shimmer	HNR
	No.	pitch	(ddp)	(dda)	Mean

		F	emale		
S.No.	File	Mean	Jitter	Shimmer	HNR
5.110.	No.	pitch	(ddp)	(dda)	Mean
496	916	261.301	0.00715	0.04549	22.669
497	917	271.303	0.00284	0.02411	30.855
498	918	232.642	0.0128	0.09734	18.356
499	919	285.03	0.01163	0.074	18.997
500	920	237.255	0.01091	0.06445	21.575
501	921	226.834	0.01466	0.05366	25.831
502	922	208.409	0.01179	0.06393	18.091
503	923	213.533	0.02798	0.07971	15.838
504	924	227.286	0.01289	0.09811	16.391
505	925	235.653	0.00901	0.06107	21.858
506	926	244.002	0.01257	0.06829	20.315
507	927	207.474	0.00676	0.03961	28.119
508	928	244.015	0.00705	0.05215	22.22
509	929	241.164	0.00635	0.04129	20.023
510	930	262.166	0.004	0.04006	25.78
511	931	226.66	0.00409	0.07144	22.685
512	932	213.183	0.00474	0.05181	24.679
513	943	201.942	0.005	0.12503	14.309
514	944	303.152	0.02445	0.2648	6.091
515	972	210.408	0.00885	0.19436	11.406
516	973	259.151	0.01763	0.24619	12.343
517	976	221.398	0.01202	0.04842	23.429
518	977	223.59	0.00807	0.04602	23.017
519	978	231.684	0.00466	0.03163	28.317
520	979	194.625	0.01316	0.09448	19.261
521	980	216.421	0.00767	0.06388	20.474
522	981	174.685	0.01458	0.15863	14.886
523	982	204.015	0.00738	0.02946	25.884
524	983	242.487	0.00477	0.02517	32.845
525	984	268.664	0.0262	0.05284	23.555
526	989	281.911	0.00556	0.03708	27.362
527	990	192.555	0.01839	0.22669	11.001
528	991	262.215	0.01405	0.07253	23.118
529	992	250.391	0.00784	0.0865	23.299
530	993	227.44	0.00598	0.04517	23.787
531	994	257.422	0.00446	0.06147	22.812
532	995	244.33	0.01329	0.07129	19.078
533	996	294.404	0.01525	0.0582	25.2
534	997	247.768	0.00854	0.08529	22.368
535	1000	253.074	0.000004	0.06304	17.564
536	979	194.625	0.01055	0.00304	19.261
537	993	227.44	0.01510	0.09448	23.787
538	982	204.015	0.00338	0.02946	25.884
539	928	244.015	0.00738	0.05215	22.22
555	520	277.01J	0.00705	0.05215	22.22

Master_Chart


Male					
S.No.	File	mean	jitter	shimmer	HNR
	No.	pitch	(ddp)	(dda)	Mean

	Female					
S.No.	File No.	Mean pitch	Jitter (ddp)	Shimmer (dda)	HNR Mean	
541	980	216.421	0.00767	0.06388	20.474	
542	885	268.828	0.02424	0.09812	17.726	

BLDE (DEEMED TO BE UNIVERSITY)

Annexure -I

- 3. Department: ENT
- 4. Name of the Guide & Designation: D.V. S.P. Guggavigeudar, Professor
- 5. Name of the Co Guide & Designation:.....

The above thesis was verified for similarity detection. The report is as follows:Software used. UrkundDate: 23-42-2019Similarity Index(%): Two. (2%)Total word Count.....

The report is attached for the review by the Student and Guide.

The plagiarism report of the above thesis has been reviewed by the undersigned. The similarity index is below accepted norms.

The similarity index is above accepted norms, because of following reasons:

The thesis may be considered for submission to the University. The software report is attached.

Signature of the Guide Name & Designation Signature of Co-Guide Name & Designation

H.T. Lathaderi **Signature of Student**

Mai 24.12.2019

Verified by (Signature) Name & Designation Librarian B.L.D.E. University's Shri B.M. Patil Medical College Bijapur.

AOI Karnataka State Dr A M Shivkumar Instructional Session/Crossfire/Invited Talk Acoustic Analysia & Normal and President This is to certify that Dr LATADEVI H of Otolaryngologists of India & 14th South Zone ENT CONFERENCE 2018 - MIMS, Mandya **36th Annual Karnataka State Conference of Association** 9 Chairperson/Moderator/Panelist/Speaker in one of the Panel Discussion/Symposium Dr Jyothiswarup **AOI** Karnataka P.Ju at the 36th Annual Karnataka State & 14th South Zone ENT Conference Secretory DIJAPUR Abnormal Indian voices - In Otolaryngologists Perepective held from 11th - 14th October-2018 at MIMS, Mandya, Karnataka. Dr M Hanumanth Prasad Organising Chairman Certificate Dr Ravi.D Organising Secretary has participated in the conference as a Dr Shankar Medikeri Scientific Committee Chairman 00

37TH AOIKCON 2019 MADIKERI

27th, 28th & 29th September 2019

Organised by

AOI Kodagu under the aegis of AOI Karnataka & Kodagu Institute of Medical Sciences

CERTIFICATE OF PARTICIPATION

This is to certify that

Dr H.T. LATHA DEVI

has participated a PAPER titled

ASSESSMENT OF NORMAL HUMAN VOICE - AN OVERVIEW OF VOICE PARAMETERS

in the Dr. S. K Mondal Gold Medal For Best Paper Presentation

in the 37th Karnataka State ENT Conference 2019 held from 27th to 29th September 2019 at Kodagu Institute of Medical Sciences.

4.4

Dr. Mohan Appaji President, AOI Karnataka

Organising Chairperson,

AOIKCON 2019

Dr. Vishwas K Co - Organising Chairperson, AOIKCON 2019

Vilian av

Dr. Shwetha

Dr. Snwetna Organising Secretary, AOIKCON 2019

Secretary, AOI Karnataka Co - Organising Secretary

AOIKCON 2019

Dr. Dhanraj G A Hunger

Dr. Deepak Haldipur Patron, AOIKCON 2019

PROFORMA

Subject ID :				Date :		
First Name :		Middle Name	e :	Last I	Name :	
Age :		Gender :		. Phone	No :	
Address :						
Present Histor	y – any compla	aints :				
Past History :						
Personal Histo	ry :					
Any Previous	Treatment Hist	tory :				
General Physic	cal Examinatio	on :				
Pulse :	BP :	ת ז	Semperature :		RR :	

INDIRECT LARYNGOSCOPY.....

CVS Examination :

RS Examination :

CNS Examination :

PA Examination :

Any Other Information :

V	oice Pa	rameters		
Acoustic	measur	es		
Pitch				
Mean	SD	Maximum	minimum	
Jitter:				
Mean	SD	Maximum	minimum	
Shimme	r:			
Mean	SD	Maximum	minimum	
Spectral	tilt:			
Noise Ei	nergy:			
Formant	Flutter.			
Harmon	cs – to n	oise ratio:		
Mean	SD	Maximum	minimum`	
Spectrog	ram:			

Remarks

B.L.D.E. UNIVERSITY

Department of Otorhinolaryngology & Head and Neck Surgery

RESEARCH CONSENT FORM

Title of the Research Project	:	Development of a tool to objectively
		identify normal human voice
Name of the Researcher	:	Dr. H.T.Lathadevi. Professor

1. Purpose of the Project

This study will be useful academically as well as clinically to know about characteristics of human voice.

2. *Procedure*

understand that, the procedure of the study will involve evaluation of various physiological/ physical parameters. The procedure will not interfere with any of my physiological parameters and they are non-invasive.

3. Risk And Discomforts

I understand determination of these voice parameters will not cause any risk to my health.

4. Benefits

I understand that my participation in the study may not have any benefit to me but this may have a potential beneficial effect in the field of laryngology

5. *Confidentiality*

I understand that medical information produced by this study will become part of institutional records and will be subject to the confidentially and regulation of the said institute. Information of a sensitive personal nature will be not be part of medical record,

but will be stored in investigators research file and identified only by a code number. The code key connecting two numbers will be kept in a separate secured location.

If data are used for publication in the medical literature and publishing purpose no names will be used and other identities such as photographs, audio and video tapes will be used only with my special written permission. I understand I may see the photographs and the video tapes and have the audio taps before giving permission.

6. Request For More Information

I understand that may ask that more questions about the study at any time I will be informed any significant new finding discovered during the study.

7. Refusal Or Withdrawl Of Participation

My participation is voluntary and I may refuse or withdraw my consent and discontinue participation in the study. I also understand researcher may terminate my participation at any time.

8. I understand that by my agreement to participate in this study I am not waiving any of my legal rights.

I confirm that *Dr. H.T.Lathadevi* (Researcher) has explained to me all the above facts thoroughly in my own language and therefore I agree to give consent to participate as a subject and this research project.

Date :

Signature of the Participant

International Journal of Pharma and Bio Sciences

ISSN 0975-6299

CREATION OF VOICE DATABASE, ACOUSTIC ANALYSIS AND STANDARDISATION OF NORMAL INDIAN VOICES

LATHADEVI H T*¹, MALIPATIL SR², S P GUGGARIGOUDAR³

*1.2.3 Department of Otolaryngology and H& N Surgery, BLDE University's Shri BM Patil Medical College & Hospital, Vijaypur, Karnataka, India..

ABSTRACT

Acoustic analysis is used to assist differential diagnosis, documentation and evaluation of treatment for voice disorders. Clinical data have shown that jitter and simmer are indices of voice pathology or perceptual hoarseness but are more commonly used as an outcome measure. A voice with some periodicity can now be analyzed with a computerized acoustic analyzer, a relatively newer technique that can be widely used in the clinical practice. The purpose of the study was to create a normative Indian voice database and propose a standardization for normal acoustic parameters for Indian voices. 1000 Normal voice samples were collected from college students (male and female) aged 18-28 yrs. A sustained vowel /a/ was recorded and analyzed for parameters like Jitter, Shimmer, Harmonic noise ratio and Fundamental frequency (Fo) using a software. The Mean, SD, range of the voice parameters were calculated from the sample voices. The value of ranges of mean Jitter was 0.00 to 0.03635, mean Shimmerwas 0.06 to 0.2506 and Harmonic Noise Ratio was 8.31 to 30.73db.

KEYWORDS: Voice database, acoustic analysis, parameters of normal voice.

LATHADEVI H T*

Department of Otolaryngology and H& N Surgery, BLDE University's Shri BM Patil Medical College & Hospital, Vijaypur, Karnataka, India.

Received on: 12-12-2016 Revised and Accepted on: 09-03-2017 DOI: <u>http://dx.doi.org/10.22376/ijpbs.2017.8.2.b349-354</u>

INTRODUCTION

Communication and expression through sound are found in most of the animals. However, it is a highly sophisticated and complex skill in humans. Spoken speech is the verbal communication that realizes the language in to sound output. This skill is acquired laboriously throughout the growth of the child into adulthood.Voice is the continuous sound produced by vocal cords that provides the basic sound to the organs of articulation which modulate it and finally produce speech. Essentially voice is the acoustic output of the vibrations of the vocal cords and the coloring of this output by the vocal tract. The sound of each individual's voice is his/her signature that is, entirely unique not only because of the actual shape and size of an individual's vocal cords but also due to the size and shape of the rest of that person's body, especially the vocal tract, and the manner in which the speech sounds are habitually formed and articulated. The voice gets affected when there is change in the architecture or the function of any of the above mentioned organs. An abnormal voice is variously described as hoarse, husky, breathy, harsh, rough etc. Moreover, our voices change throughout our lifetime, but there are also minor, and sometimes major, fluctuations throughout a day. Still, we are capable of differentiating normal voices from abnormal ones. But there is no universal, objective way of telling the exact difference between normal and abnormal voices. Since voice is essentially an acoustic output, it is possible to analyze its physical characteristics. It is logical to assume that our brain uses specific acoustic parameters to decide whether the voice is normal. The present study attempts to create a large database of normal voices, extract their physical parameters and statistically recognize the determinants of a normal voice.

Physiology of voice production

Voice is produced by vibration of vocal cords which produce the fundamental note. This is modified by the so called vocal tract which includes throat, nose and mouth. In fact, vocal tract is a series of acoustic filters which reinforce or decrease the original fundamental note. These filters are capable of assuming different shapes of varying sizesin oral and pharyngeal cavities. These changes in shape produce characteristic formants which distinguish one vowel from other. For example, the vowel [a:] have frequency bands in the region of 800 Hz and 1100 Hz.

Phonation

The Myoelastic- Aerodynamic theory or tonic theory (Van den Berg)¹ is generally regarded as the most widely accepted model to explain the mechanics of voice. According to this theory, when the vocal folds adduct in the midline due to action of interarytenoid muscle, there is build up of subglottic pressure. This causes the vocal fold to separate. When they adduct due to elastic recoil, the velocity of airflow increases in between vocal cords and the pressure between the vocal folds decrease (Bernoulli's principle). The decreased air pressure coupled with elastic recoil of vocal folds causes them to move back to midline. This is one cycle of vibration which repeats approximately 125

Hz in males and 225 Hz in females. This was questioned by Husson² who put forward his neuromuscular neurochronaxic or clonic theory of vocal fold vibration. They contended that every single vibration of the vocal cords was due to an impulse from the recurrent laryngeal nerves and the acoustic centre in the brain regulated the of vocal fold vibration. But this theory was disproved effectively. The problems with this theory was that theleft laryngeal nerve to vocal fold has a longer pathway/course than the right one; so nerve impulses should take longer than the right side; this means that vocal folds should vibrate out of phase which is not so.When tracheostomy is done the phonation does not occur even with effect the neural impulses - this means that air pressure is a component to phonation and not just neural impulses. Hence the voice requires a power source (lungs, abdominal muscles and back muscles), Oscillator (vocal folds) and resonator (vocal tract which includes oral cavity, oropharynx, supraglottis etc.)

MATERIALS AND METHODS

Collection of test subjects

Young healthy adults, between the age of 18 and 28 years, both male and female were selected for the study. All of them gave an informed consent. They underwent thorough clinical evaluation and those having any pathological condition or even suspicion of it were excluded. They were subjected to assessment of their voices by a speech therapist and an ENT surgeon. Only those who were certified as having normal voice were selected for the study. Finally there were 1000 tests subjects left.

Training and Recording of Voice Samples

Each person was first trained to produce a sustained vowel 'a' at comfortable loudness and pitch.

Recording

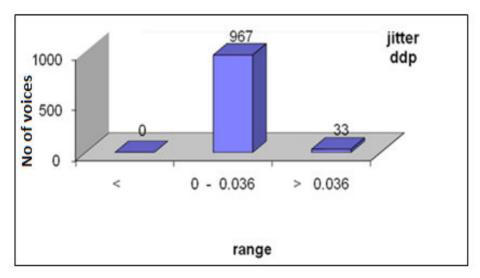
Recordings were made in a sound-treated chamber using a unidirectional microphone (Sony Audio-Technical 250XL) at a distance of 5cm in front of the lips. The sustained /a/ vowel signal was recorded for minimum of 3 seconds using the application PRAAT³ version 5.4.04. The intensity was controlled using the VU meter built into PRAAT. The sustained vowel is preferred over regular speech in vocal acoustic assessment as it provides more reliable results.^{4,5}

Sampling

A spectrograph of each sample was extracted and the most stable and uniform 1 sec slice was selected and saved as a sound file. A PRAAT script was developed that could batch process all files into a folder to extract four parameters i.e., Jitter, Shimmer, Harmonic Noise Ratio and Fundamental Frequency and out to an excel sheet. Each parameter was analyzed for different variations like mean, SD, range, etc. These ranges of parameters were compared with other normative data. All the parameters were determined with 95% confidence interval.

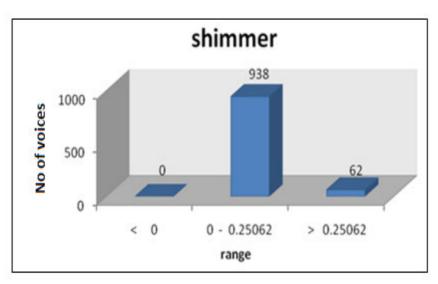
Table1
Voice parameters obtained from acoustic analysis

Parameter	Mean +/-1.96 SD 95%confidence interval
F0, fundamental frequency	201 to 928 hz
Jitter (ddp)	0 to 0.036352484
Shimmer(dda)	0.063955802 to 0.250624922
HNR (Harmonic noise ratio)	8.31738dB to 31.738Db

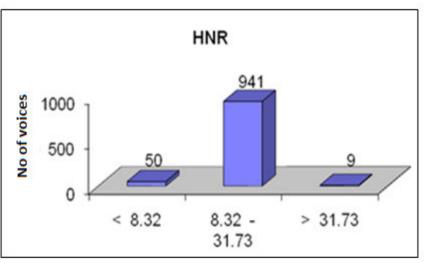

The Table.1 gives the total range of the values of the population under study. Especially the range of Fundamental Frequency is more. But the range of parameters like jitter, Shimmer and Harmonic noise ratio is almost same as other studies.

	Studies showing acoustic measures for various authors										
SI/No.	Author	Author Jitter –male		Jitter Shimmer- male female		HNR-male dB	HNR-female Db	Fo- Male Hz	Fo- female Hz		
1.	Williamson'	Less than 1.04%		Less than 3.81%		Less than 20		128	225		
2,	Simone ⁸	0.37%	0-87%	63.77%	65.17%	1.06db	-1.64	127.6	215.45		
3,	KC TORAN ⁹	0.14%	0.14%	1.6%	1,6%	25.81%	25.88%	170	246.45%		
4.	ANC Fillippe ⁵	0.49	0.62	0.22	0.22	9.56	10.9	119	205		
5.	CC Wang ¹⁰ 45m+45f	0.56	0.66					118.3	203.2		
6.	K Aries ¹¹ _{N=70}	0.46%	0.87%	0.23%	2.72%	0.13	0.12	130.6	218.38		
7.	Bonzi ¹² _{N=72}	0.36 Local%	0.31 Local%	3+/- 0.9	2.7+/-1.1	20+/-2	21+/-3				
9	Lathadevi et Al N=1000	0.018176242		0.1572899		20.024		120	220		

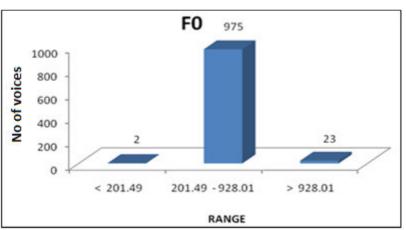
 Table2


 Studies showing acoustic measures for various authors

Graph 1 Jitter range


Graph.1 shows the number of voice population falling within the range of quoted range of jitter values. For e.g.The 967 voice samples have a range of 0.0 to 0.036Hz jitter.

Graph2 Shimmer range



Graph.2 shows the number of voice population falling within the range of quoted range of shimmer values. The 938 voice samples have a range of 0.0 to 0.25062 shimmer.

Graph 3 HNR RATIO

Graph.3 shows the number of voice population falling within the range of quoted range of HNR values.The 941 voice samples have a range of 8.32 to 31.73dB.

Graph 4 Frequency Range F0

Graph.4 shows the number of voice population falling within the range of quoted range of Frequency values.

This article can be downloaded from www.ijpbs.net B - 352

DISCUSSIONS

Voice assessment which was subjective so long has now been aided by objective analysis tools. This is essentially due to the advances made in precise sound capturing equipment and fast and accurate acoustic analysis software. Since the methods are simple and non-invasive they are being used widely throughout the world. A number of acoustic analysis software like Dr Speech, MDVP, PRAAT, and Vaghmi have been developed. Some of them come embedded in dedicated hardware. However, a simple set up can be established with a moderate computer, a good quality microphone and recording software. Some analytical software provides recording facility built into them. A sound treated room is mandatory to avoid extraneous noise and have a faithful recording. This arrangement provides us with extensive physical information about the test sound. The parameters so obtained for a particular sound can be assumed to be specific for that sound. Our hypothesis is that human brain perceives a voice as normal on specific parameters common to all normal voices. The present study aims at statistically finding out such parameters common to all test subjects having normal voice. These can later be used as a vardstick to diferentiate abnormal voices from the normal. There is limited literature available that addresses standardization of parameters of normal voice. Even in available data the number of normal voices was not more than 200^{5,8,9,10,11,12}. In our study we have collected 1000 normal voices which would give more dependable results. This database can also serve other researchers as a database repository. From the clinical standpoint of view, assessment of voice signal has become noninvasive, less expensive and commonly available⁶. In our study we have used PRAAT, acoustic analysis software. This is being in a large number of laboratories throughout the world⁷.PRAATis an efficient computer software package used for the analysis of speech in phonetics. It is developed by Boersma and Weenink on 1995. It can run on a wide range of operating systems including, Linux, UNIX, Mac and Microsoft Windows. Its latest version is PRAAT 5.3.39. Praat extracts as many as 30 parameters by its voice analysis. However, we have considered F0, jitter, Shimmer and HNR only since many other studies have proved their efficacy¹².Maryn et al⁶ (2009:217) as quoted by Williamson⁷ compared frequency perturbation (jitter) and amplitude perturbation (Shimmer) measures using both MDVP and PRAAT programs, and both a purpose-built recording system and a personal computer-based system for acoustic voice assessment. Theauthor noted that MDVP consistently yielded higher measures than PRAAT and concluded that "one can hardly compare frequency perturbation outcomes across systems and programs and amplitude perturbation outcomes across systems ... "PRAAT software itself can calculate five different measures of jitter and six different measures of Shimmer. However, Graham Williamson⁴ et al in his articlestate: "It is difficult to be precise about norms for acoustic measures such as jitter, Shimmer, noise-to-harmonics ratio and fundamental frequency. There are many factors which militate against declaring all-encompassing norms. Some of these are personspecific (e.g. gender and age differences), cultural (e.g.

what north Americans may consider to be within normal limits may be different from what north Koreans consider to be typical), and related to the testing environment (e.g. variation in the equipment used, and - importantly the use of different algorithms in the software programs which are used to make the measurements). Measures of jitter and Shimmer using one software program cannot always be compared directly with measures made by another software program" The following table gives comparison of different values from studies: Bielamowicz et al¹³ have compared perturbation measures from C Speech, Computerized Speech Laboratory, SoundScope, and a hand marking voice analysis system and state that "Measures of perturbation in the various analysis packages use different algorithms, provide results in different units, and often yield values for voices that violate the assumption of guasi-periodicity.AA Simone et al⁸ state "We assume that comparison of results collected with different vocal acoustic analysis programs can present differences even when using similar measures, owing to differences in algorithms, methods to calculate fundamental frequency, type of microphone used, type of storage of the recorded voice and type of token used, if connected or sustained speech" Areis, et al¹¹ opine that despite the accuracy and reliability of each machine, authors have agreed to standardize normative data individually due to a number of factors that may cause variations among each system. These possibilities include the type of programming of the acoustic analysis software, the use of recording criteria, type of microphone and other devices used in voice recording. Despite these complications, some authorities do declare so-called thresholds of pathology. For example, the Multi-Dimensional Voice Program (MDVP)(Kay Elemetrics, 2008) indicates a threshold of pathology of <=1.040% for jitter and <=3.810% for Shimmer. The normative Indian voices data was also given by Hemaet Al¹⁴using MDVP software. About 104 voice samples were used with 54 males and 43 females. The parameters were compared with western voices which showed differences in perturbation measurements. They concluded that these differences are due to change in vocal tract length, mass and tension of vocal tracts. There is a growing international trend for significant technological developments in the field of voice and speech evaluation, especially in the advancement of vocal acoustic analysis software. For this reason, standardization of normal acoustic measures is necessary due to the variation of systems protocols and software algorithms⁵.Several acoustic analysis softwares have demonstrated normal and pathological voice conditions. Despite the accuracy and reliability of each machine, authors have agreed to standardize normative data individually due to a number of factors that may cause variations among each system. ANA et al⁵ felt that standardization of fundamental frequency measures (f0), jitter, Shimmer and harmonic noise ratio (HNR) for young adults with normal voice is the need of the day. They studied normal voices of 20 males and 20 females. between 20 and 45 years, without signs and symptoms of vocal problems using CSL-4300 Kay-Elemetrics software with vowels /a/ and /é/2. Their Results showed that for females, vowels /a/ had average measures of f0 as

205.82 Hz; jitter of 0.62%; Shimmer of 0.22 dB; HNR of 10.9 dB , respectively. For males, vowel /a/ had average measures of: f0 119.84 Hz; jitter of 0.49% ; Shimmer of 0.22 dB ; HNR 9.56 dB respectively. Both f0 and NHR female measures were significantly higher than their male counterparts. They felt significant differences with other studies. Their findings are given as mean only without range.Acoustic measures for normal adult voices are given by Williamson' from PRAAT Software as follows: Percentage of Jitter and Shimmer is to be less than 1.04% and 3.8% respectively. HNR Value is to be less than 20 Db. Fo in males and females as less than 128 and 225 Hz respectively. These normative values are similar in our study. The value of Jitter in our study was 0.018% (Jitter ddp) which is very low when compared to other studies like Bonzi et al¹² of local jitter percentage of 0.36%. Wang¹⁰ was 0.56%, Simone et al⁸ was 0.37% (jitter ratio), Kirt et al¹¹ was 0.46%, Fillippe et al⁵ was 0.62% (jitter Avg). When the value of Shimmer (0.1572) was compared with other studies like A Simone et al⁸ (2.37 db), Bonzi et al¹² (local Shimmer%, 3+-0.9) and Toranet al⁹ (1.6%), it is found to be low. But studies like Horii¹⁶ (0.132 db), Ana et al⁵ (0.22 db) Aries et al¹¹ (0.23%)showed similar values. On analysis of HNR value from our study (20 db), it was similar to Bonziet al^{12} (20+/-2 db) and Fernandez Leisa et al^{15} (18db). It was higher value of 25.81 db in KC Toran et al^{9} and very less in ANCFillippeet Al⁵ (9.56 db). The comparision of values of parameters show significant differences which

REFERENCES

- Berg VDJ. Myoelastic-aerodynamic theory of voice production. J of Speech and Hearing Res. 1958; 3(1): 227-244.
- 2. Herbert DH, Dunker E. Husson's Theory; An Experimental Analysis of his Research Data and Conclusions. Arch Otolaryngol, 1967;85(3):303-313.
- 3. Praat:Doing phonetics by computer.Paul Boersma and Weeninck. Available from http://www.fon.hum.uva.nl/praat/
- 4. Parsa V, Jamieson DG. Acoustic discrimination of pathological voice: sustained vowels versus continuous speech. J Speech Lang Hear Re., 2001;44(2):327-39.
- de Felippe AC, Grillo MH, Grechi TH. Standardization of acoustic measures for normal voice patterns. Brazilian journal of otorhinolaryngology. 2006 Oct 31;72(5):659-64.
- Maryn.Y. Acoustic measurement of overall quality of voice of sustained vowels and continuous speech. 2010[Internet] Available from https://biblio.ugent.be/publication/888156/file/888 179.pdf
- Grahaam Williamson. Acoustic Measures (Norms). Voice. [internet] [cited 01 February 2016]. Available from http://www.sltinfo.com/acoustic-measures-norms/
- 8. Simone AA. Marcos G. José CP, Marcelo OR.Brazilian Journal of Otorhinolaryngology,2002. 68:4(14), 540-544

necessitate standardization. The purpose of this paper was to state the significance of voice analysis systems in the prediagnosis of certain medical conditions which later may transform into fatal or incurable diseases. The proposal of a voice database, standard voice analysis tool, and method of voice measurement is done. This methodology ensures accuracy, patients' ease, economy and less time consuming in predicting symptoms at early stages. It can be used by any medical practitioner without prior training. Since it is not possible to have a single world standard for normal voice parameters every clinic or laboratory should develop its own standards and use these as benchmark for further comparisons or clinical evaluations.

CONCLUSION

Acoustic analysis of voices is a simple noninvasive technique which can be effectively carried out easily at any clinic with good accuracy and reasonable prediction of symptoms. It is one of the objective tool for characterization of normal voice that can be used by a clinician. Jitter, Shimmer and Harmonic noise ratio are the parameters measured whose ranges give an idea of normality of the voice.

CONFLICT OF INTEREST

Conflict of interest declared none.

availablefromhttp://oldfiles.bjorl.org/conteudo/acervo/acervo_english.asp?id=446

- 9. Toran KC, Lal BK. Objective analysis of voice in normal young adults. Kathmandu University Medical Journal, 2009; 7(4): 374-377.
- Wang CC et al. Voice Acoustic Analysis of Normal Taiwanese Adults. J Chinese Med Assoc. 2004; 67(4):179-184.
- Kirt AD, Ray C, Fredrick YH. Vocal acoustic measures of Asymptomatic Filipino young adults at a private tertiary Hospital in Quezon city- A pilot study. Philippine J of Otol and H and N Surg. 2012 JulyDec;27(2):12-17.
- 12. Bonzi EV, Grad GB, Maggi AM. Study of the characteristic parameters of the normal voices of Argentinian speakers.papers in Physics.2014;6 (1)23-25.
- Bielamowicz S, Kreiman J, Gerratt BR, Dauer MS, Berke GS. Comparison of voice analysis systems for perturbation measurement. J of Spch and Hear Res. 1996 Feb;39(1):126-34.
- Hema N.; Mahesh, Sangeetha; Pushpavathi, M. Normative Data for Multi-Dimensional Voice Program(MDVP) for Adults - A Computerized Voice Analysis System. J of the All India Institute of Spch& Hear. 2009; 2 (28): 1-5.
- 15. Fernández LR et Al, Acoustic analysis of the normal voice in nonsmoking adults. Actaotolaryngolespanol. 1999;50(2):134-4.

Reviewers of this article

Dr.R.M.Karadi, M.S. (ENT)

Prefessor & HOD, Department of ENT, Shri B. M. Patil Medical College, Bijapur, India

Asst.Prof.Dr. Sujata Bhattacharya

Assistant Professor, School of Biological and Environmental Sciences, Shoolini University, Solan (HP)-173212, India

Prof.Dr.K.Suriaprabha Asst. Editor, International Journal of Pharma and Bio sciences.

Prof.P.Muthuprasanna Managing Editor, International Journal of Pharma and Bio sciences.

We sincerely thank the above reviewers for peer reviewing the manuscript

Objective Acoustic Analysis and Comparison of Normal and Abnormal Voices

HT LATHADEVI¹, SURESH PUNDALIKAPPA GUGGARIGOUDAR²

ABSTRACT

Introduction: Acoustic analysis is commonly used to diagnose, document and treat voice disorders. Type I and Type II voices which are nearly periodic can be easily assessed with computerised acoustic analysers. Widely used voice parameters like Jitter, Shimmer and Harmonic Noise Ratio (HNR) are indices of voice pathology and indicate different diseases and help as an outcome measure.

Aim: To study whether objective acoustic analysis is able to differentiate between abnormal and normal voices.

Materials and Methods: In the present study, the patients were made to phonate sustained vowel /a/ and the voice was recorded to analyse parameters like Jitter (ddp), Shimmer (dda), HNR and Median pitch using the acoustic software,

PRAAT. These parameters were compared with the values of the institute's own normal voice database. They were analysed for Mean, Median, standard error of mean, and Kolmogorov-Smironov values.

Results: The range of abnormal voice parameters like Jitter (ddp), shimmer (dda), median pitch and HNR measures were different from normal voices. The difference was significant in jitter (p-value of 0.026) in males, in Shimmer (p-value of 0.035) in females. HNR did not show any significance.

Conclusion: The traditional methods of perturbation measures like Jitter, Shimmer, Median pitch and HNR can help the clinicians for characterisation of voice into either normal or abnormal voices. But the comparison needs a local or regional normal voice database.

The normal voice database from these voice labs may not correlate with local population as the voices are influenced not only by the

person, age, sex, time of the day, emotions of the person, disease

but also by locality and region [6]. Most of them have felt that more

regional databases and abnormal voice comparisons are necessary

[7]. Besides, each health institution should have its own voice

assessment protocol with its recording equipment and software for patient services and research. As there are no local databases or

prior studies from our region, we felt the need of voice database and created the same. Therefore, the present study was conducted and

This was a prospective comparative study wherein normal voices

and abnormal voices were collected at Department of ENT, BLDE (Deemed to be University) Shri BM Patil Medical College, Hospital

abnormal voices were compared with the normal voices.

MATERIALS AND METHODS

INTRODUCTION

Assessment of vocal function has been a challenge to clinician since time immemorial. Two approaches are used for the same, the perceptual and objective measurement based analysis. The perceptual assessment involves listening to patient's voice production. This is performed by an expert jury and hence is a subjective measure of assessment. The objective assessment is done by using computerized software which requires acoustic, aerodynamic measures through complex medical equipments like laryngoscopy, stroboscopy, electroglottography etc. Visual methods like these are important tools in basic voice research but have several limitations. Acoustic analysis appears to have an advantage over others because of its noninvasive nature and its potential for providing quantitative data with reasonable expenditure of analysis time [1].

The development of simpler and portable instrumentation for acoustic analysis would lead to programs similar to audiometric testing in schools and industry. Such instrumentation can have large benefits in terms of overall health maintenance [2]. The acoustic parameters like fundamental frequency, Median pitch, jitter, shimmer and HNR are useful in describing vocal characteristics. These parameters change e.g., Jitter has a typical value of variation behaviour 0.5% to 1% for sustained phonation in young adults [3]. Shimmer changes in breathiness and mass lesions of vocal cord. The values become altered in adults upto 3% and 1% in children [4]. The HNR ratio depends on periodic and non-periodic components of a segment of voiced speech and represented by dB. A value less than 7 dB is considered abnormal [5].

Usually, these voice parameters are measured at a well-equipped voice lab maintained by speech pathologists. But here, we have showed the way of assessing the voice objectively using easily accessible recording equipments and PRAAT software unlike other studies where they use customised voice lab equipments (Dr. Speech, MDVP CSL Speech etc.,) which are of high cost.

to audiometric testing in and Research Centre, Vijaypur, Karnataka, India. The study was

conducted from March 2016 to Feb 2017. Ethical clearance was taken from the Institutional Ethical Clearance Committee (ECR/383/INST/KA/2013/RR-16). After getting informed consent from each person, they underwent thorough clinical evaluation by ENT surgeon.

With anticipated least difference of means of study variable between the cases and control groups as 0.0185 and anticipated SD (standard deviation) as 0.0236, with 90% power and 5% level of significance, the minimum sample of 43 under each group was calculated.

Collection of Normal Voice Samples

A total of 43 normal voices were collected from the database of young healthy adults between age of 18 to 28 years, of which 23 were males and 20 were females. Any person having history of smoking or any other pathological conditions which made them unfit for the study were excluded.

Keywords: Hoarseness of voice, Voice assessment, Voice disorder

Collection of Abnormal (Pathological) Voices

Forty-three patients (23 males and 20 females) between 18 to 55 years presenting with hoarseness and lesions of larynx like vocal nodules, vocal polyps, chronic laryngitis, voice abuse, early glottis carcinoma etc., were selected during the study.

Recording of Voices

Voices were recorded in a sound treated chamber using a unidirectional microphone (Sony Audio technical 250*L). The sustained /a/ vowel signal was recorded for three seconds, using PRAAT version 5.4.04 [8]. The intensity was controlled using VU meter built into PRAAT. From the recorded sample voice of three seconds duration, sampling frequency of 44100 Hz, spectrograph was extracted and the more stable and uniform one second was selected and saved as a sound file. A PRAAT script was written which can batch process all files into a folder to extract four parameters, Jitter (ddp), Shimmer (dda), Harmonic Noise Ratio (HNR) and Median pitch.

STATISTICAL ANALYSIS

These parameters were analysed for different variations like Mean, standard error of mean and Kolmogorov-Smirnov ZH values. Median Pitch, Jitter, Shimmer, and HNR between normal and abnormal voice groups of males and females were compared. The level of significance was set at 5% (p<0.05) with SPSS Version 23.

RESULTS

The values of Mean, standard error of mean, and Kolmogorov-Smirnov ZH values of Median Pitch, Jitter, Shimmer, and HNR between normal and abnormal voice groups of males are given. The Jitter had a p-value of 0.026 which was significant but Median pitch, HNR and shimmer did not show the significance [Table/Fig-1].

When the Mean, standard error of mean, and Kolmogorov-Smirnov ZH values of Median Pitch, Jitter, Shimmer, and HNR of females were compared between normal and abnormal voice groups, the shimmer had a p-value of 0.035 which was significant but Jitter, Median pitch and HNR did not show the significance [Table/ Fig-2].

DISCUSSION

Voice is a multidimensional measure which requires various methods for its assessment like Perceptional measures, acoustic

analysis, aerodynamic measures, video-stroboscopy, non-linear dynamic measures etc. The objective of the present study was to compare voice parameters of abnormal voices with normal voices. This study also shows that with the availability of freely downloadable software like PRAAT, ENT surgeons and Speech pathologists can easily use the software to analyse the voice effectively.

As early as 1987, Baken RJ had given details about few valid techniques for acoustic assessment of vocal dysfuction which are easily accomplished with current instrumentation [9]. Leiberman P recorded 23 voices from the speakers who had pathologic growths on their vocal cords. It was found that they had larger perturbations than did normal speakers with the same median fundamental periods. This may be related to size of pathological growth [10]. This showed that study of perturbation measures is important for assessment of voice. Hence voice parameters like Jitter (Leiberman P), shimmer (Horii Y), and harmonics-to-noise ratio (Yumoto E et al.,) were extensively studied [10-12]. A study by Hillman RE et al., demonstrated that acoustic measures alone could be highly accurate in determining the presence/absence of a voice disorder [13]. According to Eskenazi L et al., the two most useful parameters for predicting vocal quality were the Pitch Amplitude (PA) and the HNR [14].

Many authors studied both normal and pathological voices using the parameters like jitter, shimmer, and HNR. Di Nicola V et al., studied 208 subjects (148 with dysphonia and 60 normal) using computerised digital sonography [15]. HNR developed by Yumoto E et al., was analysed and found to be highly sensitive as values were different in dysphonic patients. The comparison between the average HNR recorded in those patients (1.697 dB) is significantly different from that recorded in the normal subjects (11.169 dB) (p<0.001 [12].

A similar study was done for voice analysis by Bielamowicz S et al., using C Speech, Computerized Speech Laboratory, SoundScope, and a hand marking voice analysis system. Sustained vowels from 29 male and 21 female speakers with mild to severe dysphonia were used. They felt that measures of perturbation in the various analysis packages use different algorithms, provide results in different units, and often yield values for voices that violate the assumption of quasi-periodicity. As a result, poor rank order correlations between programs using similar measures of perturbation were noted [16]. Their sample size is almost same as this study.

	Normal (N=23)				Abnormal (N=23)					
Variables	Min	Max	Mean	SE of Mean	Min	Мах	Mean	SE of Mean	Kolmogorov-Smirnov ZH	p-value
Median Pitch	94.41	616.32	181.59	29.34	90.07	469.49	178.64	18.21	0.74	0.649
Jitter (ddp)	0.002	0.029	0.014	0.002	0.002	0.153	0.033	0.008	1.47	0.026*
Shimmer (dda)	0.011	0.244	0.115	0.013	0.017	0.311	0.141	0.019	0.89	0.414
H/N Ratio	1.41	27.79	14.14	2.13	1.36	21.70	13.06	1.41	1.18	0.124

[Table/Fig-1]: Mean, standard error of mean, and Kolmogorov-Smirnov ZH values of Median. Pitch, Jitter, Shimmer, and H/N ratio between normal and abnormal voice groups among males.
*significant at 5% level of significance (p<0.05)

Veriebles	Normal (N=20)					Abnorn	nal (N=20)			
Variables	Min	Max	Mean	SE of Mean	Min	Max	Mean	SE of Mean	Kolmogorov-Smirnov ZH	p-value
Median Pitch	100.00	516.32	216.93	23.61	146.72	249.62	202.97	6.77	1.11	0.172
Jitter (ddp)	0.002	0.040	0.014	0.002	0.004	0.119	0.031	0.007	0.95	0.329
Shimmer (dda)	0.014	0.149	0.077	0.009	0.038	0.386	0.148	0.023	1.42	0.035*
H/N Ratio	1.36	27.79	14.64	1.94	1.73	27.79	14.22	1.47	0.791	0.56

[Table/Fig-2]: Mean, standard error of mean, and Kolmogorov-Smirnov ZH values of Median Pitch, Jitter, Shimmer, and H/N ratio between normal and abnormal voice groups among females. *significant at 5% level of significance (p<0.05) In this study Mean, standard error of mean, and Kolmogorov-Smirnov ZH values of Median Pitch, Jitter, Shimmer, and HNR were compared between normal and abnormal voice groups.

When the above parameters were compared among normal and abnormal male voices, the value of Jitter (ddp) was significant (p-value was 0.026, i.e., p<0.05). Median pitch, Shimmer (dda) and HNR values were different but not significant. (p-values were 0.649, 0.414 and 0.124 respectively).

When these parameters were compared among female normal and abnormal voices, shimmer values were significant. (p-value was 0.035 i.e., p<0.05).

Limitations are present for acoustic analysis when it comes to assess aperiodic voices. Titze IR discusses three types of voices depending on the periodicity of the voices. While types 1 and 2 have relatively better periodicity, the type 3 voices have aperiodic waves [17]. Type 3 voices pose problems on correctly analysing the voice parameters. In fact recently, the study by Núñez Batalla F et al., showed that there is no difference between using PRAAT and Dr. Speech for analysis of type 3 voices. Even PRAAT can analyse effectively type 3 voices [18].

Many authors felt other methods like nonlinear dynamic measures are more indicative of differentiation in such cases particularly in chaotic voices. Jacqueline BF et al., studied voices of Indian population comprising adults and elderly. They concluded that parameters like correlation dimension D2 (a voice measure of nonlinear dynamic analysis) are better assessors. The anatomical alterations in the vocal mechanism that occur for any pathological conditions result in higher values of correlation dimension. Thus, it can be considered as a useful tool in the assessment of voice. However, they also felt that the existing voice analysis techniques available to the voice clinician cannot be replaced but nonlinear measures can be added to the existing battery of tests [19].

In this study, comparison of the recorded abnormal voice parameters were done with normal voices and added to a voice database. This normal database is continuously added with voices recorded at our institution which naturally reflects the local sample population effectively. The same authors also proposed an institutional voice database, standard voice analysis tool, and method of voice measurement [7].

According to Stemple JC et al., normal database should report demographic details of their local sample populations to account for factors that influence the instrumental results such as gender, age, health history and local database [20]. Recording techniques and sample tasks may vary across the studies as well as equipment and analysis routines [21]. These factors limit the ability to compare different findings. A practical solution is to collect local norms by measuring a large group of normal speakers as a separate sample.

Di Nicola V et al., on comparison of normal and abnormal voices, felt that forensic evaluation of dysphonia needs application of strict, precise, correct sampling and analysis method following welldefined rules. Further comparison of normal and abnormal voices, HNR was analysed and found to be highly sensitive [15].

Jiang et al., examined objective acoustic analysis methods nonlinear dynamic and traditional perturbation measures like jitter and shimmer, to assess voices of patients with vocal nodules and polyps [22]. The jitter or shimmer showed no significant changes but correlation dimension, a parameter of nonlinear dynamic measure of voice showed significance. They concluded that the combination of traditional perturbation and nonlinear dynamic measures may improve our ability to provide objective clinical analysis of voices with vocal mass lesions. The cost of these analysis programs is undoubtedly high and routine use by clinicians is not possible. However, development of free computer application with widest diffusion like PRAAT has greater capabilities of analysing acoustic signals [18]. The authors also recommend PRAAT program as valid, reliable, and easily manageable and has minimum equipment requirements.

More and more normal and abnormal voices from local area are to be added to institutional voice database. This helps in overcoming bias and adds to further research on voice assessment.

LIMITATION

The age range of normal voice study cases were 18-28 years whereas that of abnormal voice were between 18-55 years. This happened because abnormal voices were more common in older age group. The sample size is small. Hence, age difference was not taken into consideration. Though the collected sample size was 63 abnormal voices (32 males and 31 females) only 43 voice files could be assessed by the program. Remaining 20 voice files became corrupted and were not analysed by PRAAT Program. The future studies are to be done on a relatively larger number of subjects from a variety of dysphonia population so that changes in parameters in each specific pathology can be defined.

CONCLUSION

Acoustic voice analysis is still a valuable technique which enables voice clinicians to compare voices to differentiate them into normal and abnormal. But this requires a robust normal database of the local and regional demographic voice samples as the recording techniques, equipments, age, sex and analysis programs differ from one another. This method can provide a non-invasive and objective tool to identify and document abnormal voices.

REFERENCES

- Davis SB. Acoustic characteristics of normal and pathological voices. Elsevier. 1979;1:271-335. Available at https://doi.org/10.1016/B978-0-12-608601-0.50010-3.
- [2] Moore GP. Terminal Report for a conference and early detection of laryngeal pathology, Gainsville; University of Florida, Department of Speech, Communication Sciences Laborotaries. 1973.
- [3] Teixeira JP, Oliveira C, Lopes C. Vocal acoustic analysis-jitter, shimmer and HNR parameters. Procedia Technology. Elsevier. 2013;9:1112-22.
- [4] Guimaraes, I. A Ciencia e a Arte da Voz Humana. Escola Superior de saude de Alcoitao, 2007*.
- [5] Boersma P. Accurate short-term analysis of the fundamental frequency and the harmonics to noise ratio of a sampled sound. IFA proceedings. 1993;17:97-110.
- [6] Bonzi EV, Grad GB, Maggi AM, Munoz MR. Study of the characteristic parameters of normal voices of Argentinian speakers. Papers in Physics. 2014;6:art. 060002.
- [7] Lathadevi HT, Malipatil SR, Guggarigoudar SP. Creation of voice database, acoustic analysis and standardisation of normal Indian voices. Int J Pharma & Biosciences. 2017;8(2):(B)349-55.
- [8] Paul Boerasma, David weenick. Praat : Doing phonetics by computer [Home page internet] No date. Available from http://www.fon.hum.uva.nl/praat/
- [9] Baken RJ, Orrikloff RF. Clinical examination of speech and voice. San Diego. Singular Thomson Learning ; 2000.
- [10] Leiberman P. Some acoustic measures of fundamental periodicity of normal and pathologic larynges. The Journal of the Acoustical Society of America. 1963;35:344. https://doi.org/10.1121/1.1918465
- [11] Horii Y. Fundamental frequency perturbation observed in sustained phonation. J of Speech and Hearing Res. 1979;22(1):5-19.
- [12] Yumoto E, Sasaki Y, Okamura H. Harmonics-to-noise ratio and psychophysical measurement of the degree of hoarseness. J Speech Hear Res. 1984;27(1):2-6.
- [13] Hillman RE, Montgomery WW, Zeitels SM. Appropriate use of objective measures of vocal function in the multidisciplinary management of voice disorders. Current Opinion in Otolaryngology & Head and Neck Surgery. 1997;5:172-75.
- [14] Eskenazi L, Childers DG, Hicks DM. Acoustic correlates of voice quality. J Speech Hear Res.1990;33(2):298-306.
- [15] Di Nicola V, Fiorella ML, Luperto P, Staffieri A, Fiorella R. Objective evaluation of dysphonia. Possibilities and limitations. Acta Otorhinolaryngol Ital. 2001;21(1):10-21.

HT Lathadevi and Suresh Pundalikappa Guggarigoudar, Objective Acoustic Analysis and Comparison of Normal and Abnormal Voices

- [16] Bielamowicz S, Kreiman J, Gerratt BR, Dauer MS, Berke GS. Comparison of voice analysis systems for perturbation measurement. J Speech Hear Res. 1996;39(1):126-34.
- [17] Titze IR. Workshop on acoustic voice analysis: Summary statement. National Centre for Voice and Speech. 1995.
- [18] Núñez Batalla F, González Márquez R, Peláez González MB, González Laborda I, Fernández Fernández M, Morato Galán M. Acoustic voice analysis using the praat program: comparative study with the dr. speech program. Acta Otorrinolaringol Esp. 2014;65(3):170-76.
- [19] Jacqueline BF, Balasubramanium RK, Pitchaimuthu AN, Bhat JS. Nonlinear dynamic analysis of voice: A normative study in the Indian population. Int J Med Res & Health Sci. 2014;3(1):128-32.
- [20] Stemple JC, Roy N, Klaben B. Clinical voice pathology: Theory and management, 5th edn. Plural Publishing, 28-Jan-2014-468.
 [21] Verd AP, Mergan AT, Easters affecting the quality of sound recording for speech
- [21] Vogel AP, Morgan AT. Factors affecting the quality of sound recording for speech and voice analysis. International Journal of Speech-Language Pathology. 2009;11(6):431-37.
- [22] Jiang JJ, Zhang Y, MacCallum J, Sprecher A, Zhou L. Objective acoustic analysis of pathological voices from patients with vocal nodules and polyps. Folia Phoniatr Log op. 2009;61(6):342-49.

PARTICULARS OF CONTRIBUTORS:

- 1. Professor, Department of ENT, BLDE University's (DT) Sri BM Patil's Medical College, Hospital and Research Centre, Vijayapur, Karnataka, India.
- 2. Professor, Department of ENT, BLDE University's (DT) Sri BM Patil's Medical College, Hospital and Research Centre, Vijayapur, Karnataka, India.

NAME, ADDRESS, E-MAIL ID OF THE CORRESPONDING AUTHOR:

Dr. HT Lathadevi,

Professor, Department of ENT, BLDE University's (DT) Sri BM Patil's Medical College, Hospital and Research Centre, Vijayapur-586103, Karnataka, India. E-mail: lathadevi45@gmail.com

FINANCIAL OR OTHER COMPETING INTERESTS: None.

Date of Submission: Apr 14, 2018 Date of Peer Review: May 08, 2018 Date of Acceptance: Sep 22, 2018 Date of Publishing: Dec 01, 2018