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Abstract: Toxic metals, including excessive levels 
of essential metals tend to change biological struc-
tures and systems into either reversible or irreversible 
 conformations, leading to the derangement of organ 
functions or ultimate death. Nickel, a known heavy metal 
is found at very low levels in the environment. Nickel is 
available in all soil types and meteorites and also erupts 
from volcanic emissions. In the environment, nickel 
is principally bound with oxygen or sulfur and forms 
oxides or sulfides in earth crust. The vast industrial use 
of nickel during its production, recycling and disposal 
has led to widespread environmental pollution. Nickel 
is discharged into the atmosphere either by nickel min-
ing or by various industrial processes, such as power 
plants or incinerators, rubber and plastic industries, 
nickel-cadmium battery industries and electroplating 
industries. The extensive use of nickel in various indus-
tries or its  occupational exposure is definitely a matter 
of serious impact on human health. Heavy metals like 

nickel can produce free radicals from diatomic molecule 
through the double step process and generate superoxide 
anion. Further, these superoxide anions come together 
with protons and facilitate dismutation to form hydro-
gen peroxide, which is the most important reason behind 
the nickel-induced pathophysiological changes in living 
systems. In this review, we address the acute, subchronic 
and chronic nickel toxicities in both human and experi-
mental animals. We have also discussed nickel-induced 
genotoxicity, carcinogenicity, immunotoxicity and tox-
icity in various other metabolically active tissues. This 
review specifically highlighted nickel-induced oxidative 
stress and possible cell signaling mechanisms as well.
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immunotoxicity; nickel; oxidative stress.

Introduction
Heavy metals are chemical elements that have a specific 
gravity that is at least five times that of water. They are 
innate ingredients of the earth’s outer layer and are found 
in varying concentrations in all ecosystems. The heavy 
metals constitute key portions of the periodic table and 
include metals from groups IIA (most of the alkaline earth 
metals) to VIA (chalcogens like selenium, polonium, tel-
lurium etc.) of the periodic table. Among the environ-
mental heavy metal pollutants, nickel is considered as an 
industrial and occupational health risk, as many nickel 
compounds are accessible in the human environment 
[1]. Swedish chemist Axel Cronstedt in 1951 was the first 
person to obtain purified nickel, the 28th element in peri-
odic table. Earlier, copper miners mistook nickel ore for 
copper ore and described it as kupfernickel or “the devil’s 
copper”. It appears as a silvery white metal, which is 
found to be in multiple states of oxidation, commencing 
from −1 to +4 [2]. It has also been observed that the +2 
oxidation or divalent state nickel is the main widespread 
analogue of nickel in biological systems. Most nickel sub-
sists as a firm form of hydroxides at pH >6.7 whereas all 
the nickel complexes are found to be relatively soluble at 
pH <6.5 [3].
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Metal toxicity

The beneficial and adverse effects of metals are well known 
to many branches of life sciences, but their influences in 
physiological chemistry have been studied in-depth only 
in recent decades. Metals play an integral role by conju-
gating at the dynamic sites of enzymes and contributing 
directly in the catalytic process, thus stabilizing the mac-
romolecular structures of proteins and nucleic acids and 
affecting the structural and functional integration.

The possible recognition of the essential biological 
roles of metals in no way obviates the primary objective of 
ecological and toxicological investigation, that is, to elimi-
nate the hazards created by metals. Thus, it is important 
to understand the actions of metals in the physiological 
and toxicological aspects [4]. Metals induce a two-fold, 
elevated, biphasic dose response curve, which allows a 
gross division into two general regions (Figure 1)
(i) Potentially, each of the element has a biological mean-

ing which can be evaluated properly only against a 
milieu of deficit state.

(ii) Potentially, every element is toxic when presented 
to an organism in high enough concentration or 
 threshold level.

Nickel toxicities (human and experimental)

The hazards from heavy metals, such as nickel, are abso-
lutely man made and the selected groups who are occu-
pationally exposed to it are the main victims of toxicities. 
The toxic effects are restricted to a relatively slender group 
of individuals who are exposed to toxic metals in their 
workplace [5]. During last few decades, trace metal tox-
icity-related health problems outshined the mere under-
standing of occupational health issues of professionally 
exposed individuals. The broad scope of environmental 
changes in the air, water and soil, through industriali-
zation, urbanization, transportation and the overuse of 

chemicals in agriculture-related industries has threatened 
the physical well-being of individuals through nutrition 
and has caused grave concern in terms of exposure to 
certain trace metals [6–8].

Environmental nickel levels depend especially on 
natural sources, pollution from nickel-manufacturing 
industries and airborne particles from combustion of fossil 
fuels. Absorption from atmospheric nickel pollution is of 
least concern. Interestingly, vegetables usually contain 
more nickel than do other food items; high levels of nickel 
have been found in legumes, spinach, lettuce and nuts. 
Certain products, such as baking powder and cocoa powder, 
have also been found to contain excessive amounts of 
nickel, perhaps related to nickel leaching during the manu-
facturing process. Soft drinking-water and acid beverages 
may dissolve nickel from pipes and containers. Leaching or 
corrosion processes may contribute significantly to the oral 
nickel intake, occasionally up to 1 mg/day [9].

The environmental sources of lower levels of nickel 
include tobacco, dental or orthopedic implants, stain-
less steel kitchen utensils and inexpensive jewelry [10]. 
Tobacco smoking is another source of non-occupational 
exposures to nickel. It has been observed that each ciga-
rette contains 1.1–3.1 μg of nickel and that about 10%–20% 
of the nickel inhaled is present in the gaseous phase. 
According to some studies, nickel in tobacco smoke may 
be present in the form of nickel carbonyl, a form which is 
extremely hazardous to human health. Pipe tobacco, ciga-
rettes and other types of tobacco products do not greatly 
differ from one another in terms of nickel content [11, 12].

The route of nickel exposure is mainly responsible 
for the severity of the impact on system biology, immu-
nology, neurology, reproduction, development and car-
cinogenicities, either through acute (01 day), subchronic 
(10–100 days) and chronic (>100 days) exposure periods. 
One of the most common pathways to nickel toxicity is an 
allergic skin reaction sensitive population. A report indi-
cated that nickel is a potential immunomodulatory and 
immunotoxic agent aside from its action as an allergen in 
humans [13, 14]. The International Agency for Research on 
Cancer (IARC) [15] and the U.S. Department of Health and 
Human Services classified nickel compounds as human 
carcinogens on the basis of various studies in human and 
experimental animals [16].

Acute toxicity (01 day)

Humans
Acute toxicity in humans resulting from absorption 
through the gastrointestinal tract or by inhalation through 
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Figure 1: The characteristic of metals as environmental pollutants.
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lungs was primarily reported by Sunderman [17]. Nickel 
carbonyl inhalation causes two kinds of acute toxic 
effects: instant and delayed. The symptoms of acute tox-
icities include nausea, vomiting, vertigo, irritation, etc. 
These symptoms last for a few hours to a couple of days. 
Instant symptoms are followed by delayed symptoms like 
stiffness of the chest, constant cough, dyspnea, cyanosis, 
tachycardia, palpitations, sweating, visual disturbances 
and weakness etc. [18]. Death due to cardiac arrest has 
been reported in a 2 ½ year old girl, who consumed nickel 
sulfate accidentally [19]. Deaths due to respiratory distress 
syndrome (ARDS) among spray painting workers exposed 
to nickel have already been documented [20]. Sunderman 
et al. reported shortness of breath and giddiness among 
electroplating workers who accidentally drank nickel 
chloride-polluted water (1.63 g/L) [21].

Experimental animals
One observation in a single- dose nickel chloride injection 
in male rats showed elevated circulating prolactin levels 
after 1 day and elevated levels for 4 consecutive days [22]. 
Acute nickel toxicity also caused renal damages and frank 
hematuria [23]. Water-soluble nickel compounds are more 
toxic than the less soluble compounds. The less soluble 
nickel compounds like nickel oxide and subsulfide have 
been found to have LD50 greater than 3600 mg Ni/kg.b.wt.
in rats, whereas soluble nickel compounds, i.e. nickel 
sulfate and acetate, exhibited an LD50 range of 39–141 mg 
Ni/kg.b.wt. in rats and mice [24].

Subchronic toxicity (10–100 days)

Humans
A study on 6-week exposure to nickel fumes (0.07–
1.1  mg nickel/m3) to welders caused a breathing rate 
increase and visual dysfunctions with tiredness [25]. In 
the case of women who were occupationally exposed 
to soluble nickel compounds (0.75  mg Ni/m3 average 
concentration), they showed elevated urinary protein, 
β2-microglobulin, retinal binding protein and N-acetyl-
β-D-glucosaminidase [26]. Such changes of biomarkers 
reflect tubular dysfunction. Interestingly, another study 
on workers exposed to nickel sulfate did not observe any 
proteinurea [27].

Experimental animals
A study on rats showed remarkable reductions in body 
weight and signs of liver and kidney failures due to 

exposure to oral nickel intake in a 3-week study [28]. This 
has also been observed that significant dose-dependent 
hyperglycemia, decrease in serum urea and significant 
increase in urine urea in male rats treated with NiCl2 
in different doses (0.38, 0.75 or 1.5  mg/kg/day, 28  days) 
[29]. A decrease in blood hemoglobin and Packed Cell 
Volume after nickel exposure has also been reported 
[30]. Nickel-treated rats also showed toxic symptoms like 
ataxia, hypothermia, salivation and diarrhea [13]. A study 
on rats treated with 5, 35 or 100  mg nickel/kg/day for 
2  months showed complete mortality among high-dose 
group B [31]. A dose of 35 mg/kg of nickel sulfate showed 
high WBC and platelets counts with lower blood glucose 
levels in rats [32]. Several weeks’ exposure to dietary 
nickel acetate, a degenerative change in kidney tubular 
systems has also been reported [33]. The Inhalation Toxi-
cology Research Institute’s 13-week inhalation study on 
rodents exposed to various nickel compounds revealed 
inflammation and fibrosis of the lungs as well as alveo-
lar macrophage hyperplasia corresponding to the water 
solubility of the nickel compounds, with nickel sulfate as 
the most toxic effect [34].

Chronic toxicity (>100 day)

Humans
Occupational exposure to nickel dust or nickel vapors 
resulting from welding nickel alloys is the most common 
chronic exposure routes in humans. Chronic inhalation 
and exposure to nickel dusts and aerosols contribute to 
all the types of respiratory disorders, including asthma, 
bronchitis, etc. [35]. Another study reported that nickel 
refinery workers were displaying higher incidences of 
pulmonary and nasal cancer [36, 37]. A study on women 
working in a nickel refinery did not suggest any type of 
growth or reproductive hazards [38]. However, incidental 
occupational nickel exposure (0.13–0.2  mg nickel/m3) in 
men has been found to be hazardous to growth and repro-
ductive health [39].

The main cause of concern when handling nickel, its 
alloys or its salts, is its ability to produce allergic dermatitis. 
Such reactions can occur through soil, water or direct contact 
with metal that contains nickel and even metallic jewelry or 
coins. Due to its omnipresence and occurrence in daily-use 
items, nickel is the most common reason of immediate and 
delayed hypersensitivity in occupationally exposed and 
non-exposed population [40]. Chronic nickel also induced 
increase loss of nitrogen, urinary glucose output as well as 
loss of urinary phosphates, calcium and zinc ions. Chronic 
exposure resulting in reduced nicotinamide induces a 
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disruption in oxidative phosphorylation [41]. Thus far, no 
intermediate-duration human inhalation exposure studies 
have been identified; rather, some chronic exposure studies 
have examined the potential of nickel and nickel com-
pounds to induce respiratory effects in workers. Most of 
these studies are cohort mortality studies that have been 
unable to find significant increases in the number of deaths 
from nonmalignant respiratory system diseases [42].

Experimental animals
Prolonged exposure to nickel oxide (42  mg nickel/m3) 
developed emphysema and other proliferative and inflam-
matory changes in rats [43]. Rats that consumed nickel 
sulfate (100  mg/L)-contaminated water has resulted in 
serious loss of kidney weights with significant albuminu-
rea [26]. Further, it has been observed that rats fed with 
nickel for 2 long years showed severe reduction of body 
weight [26]. The available chronic-duration database was 
considered inadequate for minimum risk level (MRL) deri-
vation given that intermediate-duration studies found an 
overall significant decrease in survival of the offspring of 
rats exposed to ≥1.3 mg Ni/kg/day [44].

Some specific aspects of nickel toxicities

Genotoxicity

An increase in the incidence of chromosomal abnormali-
ties but with no chromosome distortion was reported 
among nickel refinery workers, which were found to 
be similar with another report on workers exposed to 
manganese, nickel and iron [45, 46]. Most of the in vivo 
studies revealed that nickel and its compounds are not 
mutagenic, although some oral and intra peritoneal 
studies have reported the presence of micronuclei in the 
bone marrow in nickel exposed rodents [47, 48]. Nickel 
subsulfide exposure to both nickel-sensitized and non-
sensitized individuals showed genotoxicity like the altera-
tion of DNA configuration, resulting in cross linking and 
strand break in the human lymphocyte [49–52]. A very 
high degree of mutagenicity at the guanine phosphory-
bosyl transferase gene with low soluble nickel compound 
exposure in the Chinese hamster G12 cell line has been 
reported [53]. Nickel causes the mutation of the p53 gene, 
which is an important tumor suppressor gene and tran-
scription factor, in kidney epithelial cells [54]. Nickel also 
inhibits DNA repairing by possibly binding to DNA-repair 
enzymes and generates free radical result in irreversible 
protein degradation [48, 55].

Carcinogenicity

Nickel exposure to various workers in nickel industries 
demonstrated carcinogenic effects. Possibility, multiple 
carcinogenic factors that are also found along with nickel 
may be the reasons for such a phenomenon. Various 
studies have reported that divalent nickel is a potent car-
cinogen that can induce malignancy in both humans and 
rodents. Human exposure of nickel through industries 
like refinery, mining and smelting, stainless steel indus-
tries, and battery manufacturing facilities causes cancer, 
although it is difficult to identify the speciation of nickel 
compounds. The International Committee on Nickel 
 Carcinogenesis is currently working on identifying the 
specific nickel carcinogen [56].

Animal studies have shown the carcinogenic poten-
tial of various nickel compounds like nickel subsulphide, 
nickel chloride, nickel oxide, and nickel sulfate, etc. [57]. 
A study on rodents showed lung tumors, including adeno-
mas, adenocarcinomas, squamous cell carcinomas, and 
fibrosarcoma with an exposure to nickel oxide (7 mg Ni/m3;  
6  h/day; 5  days/week) [58]. However, the inhalation of 
6.3 mg Ni/m3 as nickel oxide for 1 month did not show any 
significant increase in lung cancer in rats [59], although 
rats exposed to nickel oxide of about 1–2 mg Ni/m3 showed 
alveolar/bronchiolar carcinoma or adenoma [60]. Results 
suggest that the genetic factors, including epigenetic 
factors and oxidative stress, are the probable causes of 
nickel-induced carcinoma. It has also been reported that 
some of the nickel compounds induce cell proliferation, 
which may induce mild DNA abrasions into extreme 
mutations [3].

Immunological effects

Nickel generates multiple reactions in the human immune 
system in a diverse fashion [40]. Experimental works have 
proven that nickel is an immunomodulatory and immu-
notoxic agent. It has been reported that nickel contact 
caused allergic dermatitis and immunologic urticarial; 
hence, nickel can be marked as both immune sensitive as 
well as an allergen [14, 61–63]. However, it remains unclear 
how a small nickel particle generates allergic manifesta-
tion. When metal oxidizes, it develops a substance named 
hapten, which can elicit an immune response by binding 
with tissue protein like large molecules [13]. Nickel expo-
sure to workers has been found to have a significant impact 
on the increase of IgG, IgA and IgM with the concomitant 
decrease in IgE levels [64, 65]. Further significant eleva-
tions of other serum proteins of cell-mediated immunity, 
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including α1-antitrypsin, α2-macroglobulin and cerulo-
plasmin, have also been observed [61]. Nickel can also 
significantly reduce the circulating antibody response of 
immunized rats treated with a viral antigen [61, 66, 67].

Endocrine effects

Nickel causes severe adverse effects on the hypothalamic-
pituitary-gonadal axis, which is further aggravated in 
protein restricted dietary condition [68]. It has been 
reported that the inhalation of nickel causes no impact 
on endocrine profiles in humans but seriously impairs the 
functions of most of the vital endocrine glands of rats or 
mice [60, 69, 70]. Rats exposed to about 0.73–2 mg Ni/m3 
as nickel oxide demonstrated adrenal medullary hyper-
plasia with benign pheochromocytoma [24, 69, 70]. Nickel 
chloride given orally at doses of ≥20 mg Ni/kg/day for up 
to 30 weeks showed an increase of pituitary glands only 
in male rats [71–73]. Female rats treated with nickel chlo-
ride (31 mg Ni/kg/day, orally) showed a decrease of prol-
actin level [68, 74]. Histopathological observations in rats 
(187.5 mg Ni/kg/day) and dogs (62.5 mg Ni/kg/day) did not 
show any adverse effects on most of the endocrine glands 
[44]. An increase of blood glucose level in rats has been 
found after a 21-day treatment of nickel sulfate (2.0  mg/ 
100 g b.wt.; i.p.) [75].

Neurogenic effects

Neurologic effects, including giddiness, weariness and 
headache, have been observed in shift employees who 
consumed nickel-contaminated water [21]. One study 
on humans found that a person who ingested a single 
dose of nickel (NiSO4; 0.05  mg Ni/Kg, b.wt.) developed 
homonymous hemianopsia (intraocular effect) for 2  h. 
[76]. A microscopic examination on rats and mice showed 
no remarkable changes in whole brain pathophysiology 
after exposure to several nickel compounds though some 
atrophy of the olfactory epithelium [77]. Force feeding 
with nickel chloride for 3 months in rats resulted in severe 
neurological disorders, including sluggishness, abnormal 
breathing, impaired body temperature regulations and 
ataxia [32, 78].

Cardiovascular effects

No increases in the number of deaths from cardiovas-
cular diseases have been reported in workers exposed to 

nickel [79]. Nickel chloride treatment (8.6 mg Ni/kg/day 
for 91 days) in rats showed a reduction in organ weights, 
including the heart [32]. Interestingly, increased heart 
weight in rats exposed to 75 mg Ni/kg/day as nickel sulfate 
for 2 years Hs been reported, although no histopathologi-
cal changes on cardiac tissues have been observed [44, 
80]. Inhalation of Ni in a low dosage (1.2 mg/m3) caused 
delayed bradycardia, hypothermia and arrhythmogen-
esis [81]. In another study, a long-term average ambient 
air level of Ni (1.9 ng/m3) in the United States resulted 
in a significant progression of cardiovascular mortality 
in humans [82]. A study on nickel exposure (100  mg/L 
NiSO4) showed significant increased lipoperoxide and 
total lipid concentrations in cardiac tissue. The mecha-
nism through which nickel acts to increase cardiovas-
cular risk factors remains unknown, although impaired 
antioxidants metabolism and oxidative stress may be 
considered as possibilities [83]. Another study showed no 
cardiovascular effects in rats or mice exposed to inhala-
tion of 0.44, 1.83 or 7.9 mg Ni/m3 as nickel sulfate, nickel 
subsulfide or nickel oxide, respectively, 6 h/day, 5 days/
week for 13 weeks [69, 70]. Hence, it can be postulated that 
a low dose of nickel through inhalation does not show 
any significant cardiovascular abnormalities; however, 
a moderate to higher dose may induce pathophysiologi-
cal changes relevant to atherogenic events, including 
increased oxidative stress, inflammatory response, and 
coagulation activity [84].

Gastrointestinal effects

Workers who consumed water during one work shift 
from a water cascade contaminated with nickel showed 
symptoms related to gastrointestinal (GI) disorders [21]. 
The symptoms included nausea, abdominal cramps, 
diarrhea and vomiting. In the case of rats treated 
with nickel chloride (25  mg Ni/kg/day; 3  months), the 
animals showed severe gastritis, including diarrhea 
[30]. However, such GI disorders were not found in rats 
treated with dietary nickel sulfate (28.8  mg Ni/kg/day; 
3  weeks) [80] or nickel sulfate (187.5  mg Ni/kg/day for 
2 years) as well [44, 85, 86].

Musculoskeletal effects

Similarly, workers accidentally consumed nickel in drink-
ing water reported muscle pain [21]. However, any such 
skeletal muscle histological abnormality was not found in 
experimental nickel exposed rats (187.5 mg Ni/kg/day) [44].
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Dermal effects

Nickel exposure to skin causes contact dermatitis in the 
general population. Several investigations on single or 
multiple oral doses of nickel sulfate showed the increase 
of severity of dermatitis in nickel-sensitive individuals [14, 
85–93]. The study further revealed body erythema, hand 
eczema and a flare-up at the patch test site after coming 
into contact with nickel sulfate. An oral challenge dose of 
nickel sulfate (0.014 mg/kg) showed signs and symptoms 
of dermatitis on subjects who had gone for patch testing 
1 month before the test [94].

Metabolic effects

An increase in serum glucose concentrations has been 
found in male rats exposed to nickel oxide (0.385 and 
0.784  mg Ni/m3; 28  days) [29]. Interestingly, a decrease 
in serum glucose concentration has been observed in the 
case of female rats exposed to nickel oxide (0.8 and 1.6 mg 
Ni/m3; 28  days) [29]. Results clearly suggested a gender 
sensitive metabolism in nickel-exposed rats. It has been 
further revealed that a single-dose injection of nickel chlo-
ride (4.5  mg Ni/Kg b.wt.) significantly increased serum 
glucose concentration in rabbits along with histopathogi-
cal changes in pancreatic cells [29]. Drinking nickel chlo-
ride for 28 days resulted in an increase of serum glucose 
concentrations in rats [94, 95]. Another study on rats 
showed a decrease of blood glucose levels after being 
treated with nickel (8.6  mg Ni/kg/day for 91  days) by 
force feeding [32]. However, it may be noted that in both 
studies, a significant reduction in body weight (20% and 
higher) has also been observed at the same dose effect 
levels. Hence, an ambiguity regarding altered metabolism 
due to the primary or secondary effects of nickel remained 
remains [24, 96].

Ni(II) Induces oxidative stress

Divalent nickel enhances lipid peroxidation at all DNA 
bases by either in vitro or in vivo systems [52, 97, 98]. 
Nickel-induced oxidative stress is rather weak; however, 
depleting glutathione and oxidatively activating various 
transcription factors cannot be ignored as possible indi-
cations of oxidative stress [98–101]. Even though diva-
lent nickel itself is not a good free radical generator from 
oxygen or hydrogen peroxide or lipid hydroperoxides, 

the entire reactionary mechanisms with all those oxygen 
derivatives can be controlled by the process of chelation 
with some ligands like histidine or cysteine [102–104]. It 
has been observed that Ni(II) incubated with cysteine in 
the presence of an oxygen environment generates hydroxyl 
radicals, which then react with cysteine and produce a 
carbon-centered alkyl radical and, subsequently, free 
radicals from lipid hydroxyperoxides in presence of oligo-
peptides [105, 106].

Hence it may be noted that Ni(II) toxicity lies on 
free radical generation from Ni(II) – thiol complexes or 
singlet oxygen or lipid hydroxyperoxides in a complex 
manner. It is possible that the nickel-induced accumu-
lation of iron may be directly responsible for the forma-
tion of and the reactive oxygen species (ROS) subsequent 
enhancement of lipid peroxidation via redox pathways 
[107]. Nickel induces oxidative stress with generation of 
ROS may stimulate cell signaling pathways by develop-
ing an intracellular low-oxygen microenvironment. This, 
in turn, activates the hypoxia-inducible factor-1α (HIF-1α) 
transcription factor and regulates all the hypoxia gene 
expressions. The pathway may turn into either adaptive 
response against nickel induced cellular hypoxia or apop-
tosis. Further, it was also observed that heavy metals like 
nickel(II) through ROS may mimic cellular hypoxia but 
may not always activate HIF-1 dependent genes [96]. The 
possible reason behind the nickel-induced activation of 
HIF-1α transcription factor is that Ni(II) replaces Fe(II) 
in the oxygen carrier and produces a hybrid form of non-
functional hemoglobin. This phenomenon develops into 
permanent intracellular hypoxia, which then activates 
HIF-1α [108].

Human studies
The oxidative effects of nickel on human lymphocytes in 
vitro manifested increased levels of intracellular ROS, lipid 
peroxidation and hydroxyl radicals after acute exposure 
to inorganic nickel, which supported the concept of nickel 
chloride induced oxidative stress [106]. In the human 
bronchial epithelial cell line BEAS-2B, however, nickel was 
only mildly active in inducing an oxidative stress response 
compared with other metal species measured as ROS [109]. 
Arranging various metal species in order of increasing 
toxicity yields the following: Ni(II) < Cr (VI) < Cd (II) [106, 
110]. Several extensive studies on cell lines and blood lym-
phocytes clearly indicate nickel-induced oxidative stress 
in humans [111, 112]. Nickel carbonate hydroxide-induced 
genotoxicities and lymphocytic destructions are mediated 
through oxidative stress involving H2O2, singlet oxygen or 
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the hydroxyl radical [112]. The pretreatment with endog-
enous antioxidant enzymes like catalase (CAT) and super-
oxide dismutase (SOD) on human lymphocytes have been 
proven effective to reduce such nickel-induced oxidative 
stress [109, 113].

After controlling for confounders, plasma lipid per-
oxidation levels significantly increased and erythrocyte 
antioxidants significantly decreased in a group of nickel-
plating workers [114].

Experimental animal studies
The intraperitoneal administration of nickel chloride 
results in increased hepatic, renal and pulmonary lipid 
peroxidation, as indicated by malondialdehyde (MDA) 
in fresh tissue homogenates [115–117]. Using a mouse 
model, a previous study reported that the intraperito-
neal administration of nickel chloride enhances hepatic 
lipid peroxidation and depletes glutathione [118]. In a 
mouse study, multiple intraperitoneal doses of the com-
pound elicited a moderate increase in lipid peroxidation 
in whole testis homogenates and higher dose-related 
increases in both mitochondrial and microsomal frac-
tions [119]. The extent of the nickel-induced lipid per-
oxidation showed an inverse relationship with some of 
the endogenous cellular antioxidant defense systems, 
except SOD, CAT and glutathione-S-transferase. Moreo-
ver, the exposure of rat lymphocytes to nickel subsulfide 
increases the formation of ROS in a concentration-
dependent manner [113].

Oxidative stress and cell signaling by nickel

Inter and intra cellular communication with response to 
extracellular stimuli through biological mechanisms is 

Figure 2: The nickel-induced inflammatory pathways.
ROS, reactive oxygen species; NF-κB, nuclear factor κB; HIF-1α, 
hypoxia inducible factor 1α; TNFα, tumor necrosis factor-α.
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Figure 3: The nickel-induced oxidative stress.
MAPK, mitogen-activated protein kinase; TNFα, tumor necrosis factor α; IL-1, interleukin 1; NF-κB, nuclear factor κB; HIF-1α, hypoxia 
inducible factor 1α; ARF-1, Cyclic AMP-dependent transcription factor; TSP-1, Thrombospondin 1; ROS, reactive oxygen species.
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called “cell signaling” or “signal transduction”. These 
cell signaling pathways follow transcription mecha-
nisms that are responsible for specific gene expressions 
via proteins named as transcription factors. These tran-
scription factors bind with specific DNA sequences and 
further activate RNA polymerase II. The cell signal trans-
duction pathways modulate various physiological func-
tions, including gene expression, muscle contraction, 
nerve impulse propagation or inflammation. Interestingly 
ROS, which are found to damage cells and are harmful for 
physiological functions are found to be intracellular sign-
aling regulators [120]. A study revealed that ROS influence 
several gene expressions through signal transduction 
pathways [121]. Given that ROS are oxidants and behave 
as secondary messengers, they control redox as per their 
concentration and are capable of inducing either cell pro-
liferation or cell death [33, 122, 123]. Figure 2 shows the 
nickel-induced inflammatory pathways that are extended 
to even endothelial function regulations.

This cell signaling mechanism also includes cytosolic 
calcium concentration, which also regulates both inflam-
matory and endothelial functions, protein phosphoryla-
tion and the activation of nuclear factor κB (NF-κB) and 
the AP-1 proteins [124]. Nickel induces mitogen-activated 
protein kinase (MAPK) upregulations, which in turn, 
activate TNF and the IL-1 pathways to further activate 
NF-κB. ROS and metal ions primarily inhibit phosphor-
serine/threonine-, phosphotyrosine- and phospholipid-
phosphatases by interacting with sulphydryl groups on 
their cystein residues, thus further generating disulphide 
bonds after oxidation [125].

These structural changes alter protein confor mation, 
which leads to the upregulation of several signaling cas-
cades, most important of which are the growth factor 
kinase-, src/Abl kinase-, MAPK- and PI3- kinase-depend-
ent signaling pathways. Figure 3 presents the overall oxi-
dative stress pathways, which make multiple cascades 
to activate redox-regulated transcription factors (AP-1, 
NF-κB, p53, HIF-1, NFAT).

Conclusions
Based on the literature, including the research carried 
out in the authors’ laboratory, we can say that nickel is a 
potentially toxic heavy metal that affects multiple organs 
of living systems. Moreover, the toxicities of nickel mani-
fested based on the manner of exposure, dose and dura-
tion. Further, nickel-mediated toxicity in organisms may 
occur through oxidative stress pathways.
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